ABCD is a rhombus whose diagonals intersect at E. Then \[\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}\] equals
A. \[\overrightarrow{0}\]
B. \[\overrightarrow{AD}\]
C. \[2\overrightarrow{BC}\]
D. $2\overrightarrow{AD}$
Answer
Verified
495.3k+ views
Hint: We will start by using a fact that all the sides of a rhombus are equal and the diagonal bisect each other at right. Then, we will use the fact that if two vectors are the same in magnitude but different in direction then their resultant is zero and finally we will use this fact of the rhombus to make pair of vectors and solve them.
Complete step-by-step solution -
Now, we have been given that ABCD is a rhombus whose diagonals intersect at E and we have to find the value of \[\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}\].
Now, we know that the diagonals of a parallelogram are perpendicular and bisect each other, so we have,
$\begin{align}
& EA=EC...............\left( 1 \right) \\
& EB=ED................\left( 2 \right) \\
\end{align}$
Now, we know that if two vectors which are same in magnitude but opposite in direction are added their resultant is zero. Therefore, we have from (1) and (2),
$\begin{align}
& \overrightarrow{EA}+\overrightarrow{EC}=0...............\left( 3 \right) \\
& \overrightarrow{EB}+\overrightarrow{ED}=0...............\left( 4 \right) \\
\end{align}$
Now, adding (3) and (4) we have;
\[\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}=0\]
Hence, the correct option is A.
Note: It is important to note that we have used the property of rhombus and diagonals of a rhombus bisect each other. So, we have used this and another fact that the sum of two equal and the opposite vector is zero to find the solution to the question.
Complete step-by-step solution -
Now, we have been given that ABCD is a rhombus whose diagonals intersect at E and we have to find the value of \[\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}\].
Now, we know that the diagonals of a parallelogram are perpendicular and bisect each other, so we have,
$\begin{align}
& EA=EC...............\left( 1 \right) \\
& EB=ED................\left( 2 \right) \\
\end{align}$
Now, we know that if two vectors which are same in magnitude but opposite in direction are added their resultant is zero. Therefore, we have from (1) and (2),
$\begin{align}
& \overrightarrow{EA}+\overrightarrow{EC}=0...............\left( 3 \right) \\
& \overrightarrow{EB}+\overrightarrow{ED}=0...............\left( 4 \right) \\
\end{align}$
Now, adding (3) and (4) we have;
\[\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}=0\]
Hence, the correct option is A.
Note: It is important to note that we have used the property of rhombus and diagonals of a rhombus bisect each other. So, we have used this and another fact that the sum of two equal and the opposite vector is zero to find the solution to the question.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science