
ABCD is quadrilateral in which . If P,Q,R,S be the mid-points of AB, AC, CD and BD respectively, show that PQRS is a rhombus.
Answer
482.4k+ views
Hint: Draw a neat diagram with the help of given information in the quadrilateral ABCD. Use the mid-point theorem of a triangle which can be given as :-
Line joining the mid-points of two sides of the triangle will be parallel to the third side of the triangle and half of it as well. Rhombus is a parallel organ with equal sides.
Complete step-by-step answer:
Information provided in the problem are
(i) ABCD is a quadrilateral with condition
(ii) P,Q,R,S are mid-points of AB, AC, CD,BD.
And hence, we need to show that PQRS is a rhombus.
So, we can draw diagram with the help of above information as
So, we have
(i)
(ii)
(iii)
(iv)
(v)
Where, equations (ii), (iii), (iv), (v) are written with the help of second information in the problem i.e. P, Q, R, S are mid-points of AB, AC, CD, BD.
As we know, the mid-point theorem states that a line joining midpoints of any two sides of a triangle will be parallel to the third side of the triangle and half of the length of the third side. So, we can apply mid-point theorem in triangle ADB, and where P and S are mid-points of AB and BD, So, we get
and (vi)
Similarly, applying mid-point theorem in triangles BCD, ABC, ACD and get respectively as
and (vii)
and (viii)
and (ix)
Now, from equation (vi) and (ix), we get
and (x)
And from equation (vii) and (viii) we get
and (xi)
As, we know parallelogram has equal and parallel opposite sides, so, we can get from above equations in quadrilateral PQRS that
and
and and
Hence, PQRS is a Parallelogram.
Now, it is given that from equation (i) and so, we can get from equation (x), (xi) and (i) as
and
and
As; , So we get
(xii)
Hence, as we know rhombus has equal four sides and parallel opposite sides. So, we can get from equation (xii) that parallelogram PQRS is rhombus as all four sides or it are equal
Hence, PQRS is a rhombus.
Note: Solve these kinds of questions by writing all the information provided in the problem and try to relate theorems with respect to given information as information will act as a hint of these types of questions. Drawing a diagram with the help of information provided and applying mid-point theorem are the key points of the problem. Using any theorem makes our problem easier and flexible.
Line joining the mid-points of two sides of the triangle will be parallel to the third side of the triangle and half of it as well. Rhombus is a parallel organ with equal sides.
Complete step-by-step answer:
Information provided in the problem are
(i) ABCD is a quadrilateral with condition
(ii) P,Q,R,S are mid-points of AB, AC, CD,BD.
And hence, we need to show that PQRS is a rhombus.
So, we can draw diagram with the help of above information as


So, we have
Where, equations (ii), (iii), (iv), (v) are written with the help of second information in the problem i.e. P, Q, R, S are mid-points of AB, AC, CD, BD.
As we know, the mid-point theorem states that a line joining midpoints of any two sides of a triangle will be parallel to the third side of the triangle and half of the length of the third side. So, we can apply mid-point theorem in triangle ADB, and where P and S are mid-points of AB and BD, So, we get
Similarly, applying mid-point theorem in triangles BCD, ABC, ACD and get respectively as
Now, from equation (vi) and (ix), we get
And from equation (vii) and (viii) we get
As, we know parallelogram has equal and parallel opposite sides, so, we can get from above equations in quadrilateral PQRS that
and
Hence, PQRS is a Parallelogram.
Now, it is given that
As;
Hence, as we know rhombus has equal four sides and parallel opposite sides. So, we can get from equation (xii) that parallelogram PQRS is rhombus as all four sides or it are equal
Hence, PQRS is a rhombus.
Note: Solve these kinds of questions by writing all the information provided in the problem and try to relate theorems with respect to given information as information will act as a hint of these types of questions. Drawing a diagram with the help of information provided and applying mid-point theorem are the key points of the problem. Using any theorem makes our problem easier and flexible.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Where did Netaji set up the INA headquarters A Yangon class 10 social studies CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The British separated Burma Myanmar from India in 1935 class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility
