Answer
Verified
460.5k+ views
Hint: To solve this question, we need to add both the fractions with each other. The fraction given above are positive proper fraction and negative proper definition respectively. The denominator of both the fractions are different. After adding, we need to convert the resultant fraction into mixed fraction. This will be our final answer.
Complete step-by-step answer:
Now, we will solve the complete question. First of all, we must understand that the above two fractions are proper fraction with opposite nature means one is positive proper fraction and the other is negative proper fraction.
Proper fraction is defined as a type of fraction in which the numerator is smaller than the denominator.
We can also see in the question that the denominators of both the fractions are different. So, for adding then we must know the Least Common Multiple (L.C.M.) of the denominators.
As we know that the L.C.M. of 7 and 4 is 28.
So, we can write,
\[\begin{align}
& =\left( \dfrac{24}{7} \right)+\left( \dfrac{-11}{4} \right) \\
& =\dfrac{24}{7}-\dfrac{11}{4} \\
& =\dfrac{(24\times 4)-(11\times 7)}{28} \\
& =\dfrac{96-77}{28} \\
& =\dfrac{19}{28} \\
\end{align}\]
The answer which we got here is in proper fraction. Now we have to convert this proper fraction into mixed fraction.
Mixed fraction is defined as a type of fraction which consists of a whole number as well as a fraction together.
As we know that the answer we got now is in the proper fraction, and we have to convert it into mixed fraction.
We know that, to convert a proper fraction into a mixed fraction, we just have to put 0 at the whole number’s place, and the fraction’s place will be the same as the proper fraction.
So, the mixed fraction form of \[\dfrac{19}{28}\] is \[0\dfrac{19}{28}\].
Therefore, the mixed fraction is \[0\dfrac{19}{28}\].
Note: We must remember the types of fraction, otherwise a student solving this question without the knowledge of types of fraction may confuse and the solution can be wrong. Also remember the way of adding two fractions when their denominators are different. Sometimes students may think about the conversion of proper fraction into mixed fraction, and may just write the proper fraction as an answer because of the 0 at the whole number’s place.
Complete step-by-step answer:
Now, we will solve the complete question. First of all, we must understand that the above two fractions are proper fraction with opposite nature means one is positive proper fraction and the other is negative proper fraction.
Proper fraction is defined as a type of fraction in which the numerator is smaller than the denominator.
We can also see in the question that the denominators of both the fractions are different. So, for adding then we must know the Least Common Multiple (L.C.M.) of the denominators.
As we know that the L.C.M. of 7 and 4 is 28.
So, we can write,
\[\begin{align}
& =\left( \dfrac{24}{7} \right)+\left( \dfrac{-11}{4} \right) \\
& =\dfrac{24}{7}-\dfrac{11}{4} \\
& =\dfrac{(24\times 4)-(11\times 7)}{28} \\
& =\dfrac{96-77}{28} \\
& =\dfrac{19}{28} \\
\end{align}\]
The answer which we got here is in proper fraction. Now we have to convert this proper fraction into mixed fraction.
Mixed fraction is defined as a type of fraction which consists of a whole number as well as a fraction together.
As we know that the answer we got now is in the proper fraction, and we have to convert it into mixed fraction.
We know that, to convert a proper fraction into a mixed fraction, we just have to put 0 at the whole number’s place, and the fraction’s place will be the same as the proper fraction.
So, the mixed fraction form of \[\dfrac{19}{28}\] is \[0\dfrac{19}{28}\].
Therefore, the mixed fraction is \[0\dfrac{19}{28}\].
Note: We must remember the types of fraction, otherwise a student solving this question without the knowledge of types of fraction may confuse and the solution can be wrong. Also remember the way of adding two fractions when their denominators are different. Sometimes students may think about the conversion of proper fraction into mixed fraction, and may just write the proper fraction as an answer because of the 0 at the whole number’s place.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE