Answer
Verified
462.6k+ views
Hint:-
The reason behind the lifting of the roof is Bernoulli’s principle. According to the principle, the pressure on one side of the surface is equal to the other side of the surface. Here, at the top of the roof there is low pressure as the wind is blowing while below the roof there is high pressure as there is no wind flowing inside the house. So, the high pressure in the inside and low pressure on the outside of the roof causes the roof to lift up.
Complete step-by-step solution
${p_1} + \rho gh + \dfrac{1}{2}{\rho _1}v_1^2 = {p_2} + \rho gh + \dfrac{1}{2}{\rho _2}v_2^2$;
Cancel out the common variables, put ${v_1} = v$and${v_2} = 0$;
${p_2} = {p_1} + \dfrac{1}{2}{\rho _1}v_1^2$;
\[{p_2} - {p_1} = \dfrac{1}{2}{\rho _1}v_1^2\];
Here: $\Delta p = {p_2} - {p_1}$;
$\Delta p = \dfrac{1}{2}{\rho _1}v_1^2$;
Put${v_1}$= v in the above equation:
$\Delta p = \dfrac{1}{2}\rho {v^2}$;
${p_2} - {p_1} = \dfrac{1}{2}\rho {v^2}$;
Apply the relation between force and pressure:
$({P_1} - {P_2}) = \dfrac{F}{A}$;
$F = ({P_1} - {P_2}) \times A$;
Put the value ${p_2} - {p_1} = \dfrac{1}{2}\rho {v^2}$in the above equation:
$F = \dfrac{1}{2}\rho {v^2} \times A$;
Here $v = 108km{h^{ - 1}}$is equal to$v = \dfrac{{108 \times 1000}}{{60 \times 60}} = 30m/s$;
\[F = \dfrac{1}{2} \times 1.3 \times 900 \times 40\];
Do the necessary calculation:
\[F = \dfrac{{46800}}{2}\];
The lift force is given as:
\[F = 23,400N\];
\[F = 2.34 \times {10^4}N\];
Final Answer: Option”3” is correct. The magnitude of aerodynamic lift on the roof is\[2.34 \times {10^4}N\].
Note:- Here we have to find the difference in pressure by applying Bernoulli’s theorem and then apply the formula$F = ({P_1} - {P_2}) \times A$. After applying Bernoulli’s equation the common terms $\rho gh$will cancel out and the final velocity ${v_2}$will be zero. In the end we will get the force which is also known as lift force and is equal to the magnitude of aerodynamic lift on the roof.
The reason behind the lifting of the roof is Bernoulli’s principle. According to the principle, the pressure on one side of the surface is equal to the other side of the surface. Here, at the top of the roof there is low pressure as the wind is blowing while below the roof there is high pressure as there is no wind flowing inside the house. So, the high pressure in the inside and low pressure on the outside of the roof causes the roof to lift up.
Complete step-by-step solution
${p_1} + \rho gh + \dfrac{1}{2}{\rho _1}v_1^2 = {p_2} + \rho gh + \dfrac{1}{2}{\rho _2}v_2^2$;
Cancel out the common variables, put ${v_1} = v$and${v_2} = 0$;
${p_2} = {p_1} + \dfrac{1}{2}{\rho _1}v_1^2$;
\[{p_2} - {p_1} = \dfrac{1}{2}{\rho _1}v_1^2\];
Here: $\Delta p = {p_2} - {p_1}$;
$\Delta p = \dfrac{1}{2}{\rho _1}v_1^2$;
Put${v_1}$= v in the above equation:
$\Delta p = \dfrac{1}{2}\rho {v^2}$;
${p_2} - {p_1} = \dfrac{1}{2}\rho {v^2}$;
Apply the relation between force and pressure:
$({P_1} - {P_2}) = \dfrac{F}{A}$;
$F = ({P_1} - {P_2}) \times A$;
Put the value ${p_2} - {p_1} = \dfrac{1}{2}\rho {v^2}$in the above equation:
$F = \dfrac{1}{2}\rho {v^2} \times A$;
Here $v = 108km{h^{ - 1}}$is equal to$v = \dfrac{{108 \times 1000}}{{60 \times 60}} = 30m/s$;
\[F = \dfrac{1}{2} \times 1.3 \times 900 \times 40\];
Do the necessary calculation:
\[F = \dfrac{{46800}}{2}\];
The lift force is given as:
\[F = 23,400N\];
\[F = 2.34 \times {10^4}N\];
Final Answer: Option”3” is correct. The magnitude of aerodynamic lift on the roof is\[2.34 \times {10^4}N\].
Note:- Here we have to find the difference in pressure by applying Bernoulli’s theorem and then apply the formula$F = ({P_1} - {P_2}) \times A$. After applying Bernoulli’s equation the common terms $\rho gh$will cancel out and the final velocity ${v_2}$will be zero. In the end we will get the force which is also known as lift force and is equal to the magnitude of aerodynamic lift on the roof.
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE