Answer
Verified
396.3k+ views
Hint:Vertices of cyclic quadrilateral lie on a circle and for cyclic quadrilateral, sum of opposite angles is equal to ${180^0}$. Apply the properties of rhombus and find the relation between radius of circle and area of rhombus.
Complete step-by-step answer:
Since it is given rhombus is a cyclic quadrilateral.
Let ${d_1}{\text{ and }}{d_2}$be diagonals of rhombus
Sum of opposite angles = ${180^0}$
$\angle A + \angle C = {180^0}$
Also AB || CD
$
\Rightarrow \angle A + \angle B = {180^0} \\
\Rightarrow \angle B = \angle C \\
$
Now, as adjacent angles are equal, it is a square.
$\angle B = {90^0}$
$\angle B$is angle in semicircle
AC and BD are diameter of circle.
Now, Area of circle = 1256
$
\pi {r^2} = 1256 \\
{r^2} = \dfrac{{1256}}{{3.14}} \\
{r^2} = 400 \\
r = \sqrt {400} \\
r = 20cm \\
$
Diameter of circle = 2r = 40cm $ \Rightarrow {d_1} = {d_2} = 40cm$
$\therefore $Area of rhombus
$
= \dfrac{1}{2} \times {d_1} \times {d_2} \\
= \dfrac{1}{2} \times 40 \times 40 \\
= 800c{m^2} \\
\\
$
Note: A cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. Students must remember the formula for the area of some common geometrical figure such as circle and rhombus.
Complete step-by-step answer:
Since it is given rhombus is a cyclic quadrilateral.
Let ${d_1}{\text{ and }}{d_2}$be diagonals of rhombus
Sum of opposite angles = ${180^0}$
$\angle A + \angle C = {180^0}$
Also AB || CD
$
\Rightarrow \angle A + \angle B = {180^0} \\
\Rightarrow \angle B = \angle C \\
$
Now, as adjacent angles are equal, it is a square.
$\angle B = {90^0}$
$\angle B$is angle in semicircle
AC and BD are diameter of circle.
Now, Area of circle = 1256
$
\pi {r^2} = 1256 \\
{r^2} = \dfrac{{1256}}{{3.14}} \\
{r^2} = 400 \\
r = \sqrt {400} \\
r = 20cm \\
$
Diameter of circle = 2r = 40cm $ \Rightarrow {d_1} = {d_2} = 40cm$
$\therefore $Area of rhombus
$
= \dfrac{1}{2} \times {d_1} \times {d_2} \\
= \dfrac{1}{2} \times 40 \times 40 \\
= 800c{m^2} \\
\\
$
Note: A cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. Students must remember the formula for the area of some common geometrical figure such as circle and rhombus.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE