All the vertices of a rhombus lie on a circle. Find the area of the rhombus, if the area of the circle is 1256$c{m^2}$.
Answer
Verified
414.9k+ views
Hint:Vertices of cyclic quadrilateral lie on a circle and for cyclic quadrilateral, sum of opposite angles is equal to ${180^0}$. Apply the properties of rhombus and find the relation between radius of circle and area of rhombus.
Complete step-by-step answer:
Since it is given rhombus is a cyclic quadrilateral.
Let ${d_1}{\text{ and }}{d_2}$be diagonals of rhombus
Sum of opposite angles = ${180^0}$
$\angle A + \angle C = {180^0}$
Also AB || CD
$
\Rightarrow \angle A + \angle B = {180^0} \\
\Rightarrow \angle B = \angle C \\
$
Now, as adjacent angles are equal, it is a square.
$\angle B = {90^0}$
$\angle B$is angle in semicircle
AC and BD are diameter of circle.
Now, Area of circle = 1256
$
\pi {r^2} = 1256 \\
{r^2} = \dfrac{{1256}}{{3.14}} \\
{r^2} = 400 \\
r = \sqrt {400} \\
r = 20cm \\
$
Diameter of circle = 2r = 40cm $ \Rightarrow {d_1} = {d_2} = 40cm$
$\therefore $Area of rhombus
$
= \dfrac{1}{2} \times {d_1} \times {d_2} \\
= \dfrac{1}{2} \times 40 \times 40 \\
= 800c{m^2} \\
\\
$
Note: A cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. Students must remember the formula for the area of some common geometrical figure such as circle and rhombus.
Complete step-by-step answer:
Since it is given rhombus is a cyclic quadrilateral.
Let ${d_1}{\text{ and }}{d_2}$be diagonals of rhombus
Sum of opposite angles = ${180^0}$
$\angle A + \angle C = {180^0}$
Also AB || CD
$
\Rightarrow \angle A + \angle B = {180^0} \\
\Rightarrow \angle B = \angle C \\
$
Now, as adjacent angles are equal, it is a square.
$\angle B = {90^0}$
$\angle B$is angle in semicircle
AC and BD are diameter of circle.
Now, Area of circle = 1256
$
\pi {r^2} = 1256 \\
{r^2} = \dfrac{{1256}}{{3.14}} \\
{r^2} = 400 \\
r = \sqrt {400} \\
r = 20cm \\
$
Diameter of circle = 2r = 40cm $ \Rightarrow {d_1} = {d_2} = 40cm$
$\therefore $Area of rhombus
$
= \dfrac{1}{2} \times {d_1} \times {d_2} \\
= \dfrac{1}{2} \times 40 \times 40 \\
= 800c{m^2} \\
\\
$
Note: A cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. Students must remember the formula for the area of some common geometrical figure such as circle and rhombus.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE