Answer
Verified
496.8k+ views
Hint: Here, we will use the property of triangle i.e.., the sum of lengths of any two sides in a triangle should be greater than the length of the third side to prove the given condition $AB + BC + CA > 2AM$.
Complete step-by-step answer:
Given,
AM is a median of a triangle ABC and the triangle is divided into$\Delta ABM{\text{ }}$and $\Delta AMC$.
As we know the property of a triangle i.e.., the sum of lengths of any two sides in a triangle should be greater than the length of the third side. Therefore, let us consider the triangle ABM, we get
$AB + BM > AM \to (i)$
Similarly, from$\Delta AMC$, we get
$AC + MC > AM \to (ii)$
Let us add equation (i) and (ii), we get
$\Rightarrow AB + BM + AC + MC > AM + AM \\$
$\Rightarrow AB + AC + (BM + MC) > 2AM \to (iii) \\ $
From the $\Delta ABC$, we know that
$\Rightarrow$ $BM + MC = BC \to (iv)$
So, let us substitute the equation (iv) in equation (iii), we get
$\Rightarrow$ $AB + BC + CA > 2AM$
Hence, equation (i) is proved.
Note: A median of a triangle is a line segment that joins a vertex to the midpoint of the side that is opposite to the vertex bisecting into two equal parts. Here, $BM = MC$ and the area of the triangles ABM and AMC are equal.
Complete step-by-step answer:
Given,
AM is a median of a triangle ABC and the triangle is divided into$\Delta ABM{\text{ }}$and $\Delta AMC$.
As we know the property of a triangle i.e.., the sum of lengths of any two sides in a triangle should be greater than the length of the third side. Therefore, let us consider the triangle ABM, we get
$AB + BM > AM \to (i)$
Similarly, from$\Delta AMC$, we get
$AC + MC > AM \to (ii)$
Let us add equation (i) and (ii), we get
$\Rightarrow AB + BM + AC + MC > AM + AM \\$
$\Rightarrow AB + AC + (BM + MC) > 2AM \to (iii) \\ $
From the $\Delta ABC$, we know that
$\Rightarrow$ $BM + MC = BC \to (iv)$
So, let us substitute the equation (iv) in equation (iii), we get
$\Rightarrow$ $AB + BC + CA > 2AM$
Hence, equation (i) is proved.
Note: A median of a triangle is a line segment that joins a vertex to the midpoint of the side that is opposite to the vertex bisecting into two equal parts. Here, $BM = MC$ and the area of the triangles ABM and AMC are equal.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE