Answer
Verified
472.2k+ views
Hint:
As we know in our question it is given that Amit’s scored 10 marks less than Joseph. It means Amit score is equal to Joseph Score minus 10 . Let’s take a variable x for joseph marks and Amit marks is x-10. Ali marks is 15 more than joseph so the linear equation for it is +15 . Hence for total marks you have to add marks of all Amit’s, Joseph and Ali.
Complete step by step solution:
Suppose Joseph marks in examination is x
Step 1: let’s start as we know marks obtained by Amit is 10 less than Joseph marks so linear equation is
= $x - 10$
Secondly, marks obtained by Ali are 15 more than Joseph marks. Hence linear equation for it is
= $x + 15$
Step 2: Let's move toward second part of this question Total marks obtained by Ali, Amit and Joseph is
\[\begin{array}{l}
& = x - 10 + x + x + 15\\
& = 3x + 5\\
3x + 5 & = 245\\
\,\,\,\,\,\,\,\,3x & = 240\\
\,\,\,\,\,\,\,\,\,\,\,\,x & = 80
\end{array}\]
Hence marks obtained by Joseph are 80 and marks obtained by Amit are 70.
Marks obtained by Amit’s is 70
Note:
In this type of you must know how to frame linear equations from word problems. Special attention must give on more than or less than. In case of more than you always add and in case of less than you always subtract. For making mathematical equations you have to suppose some variable like x, y, z.
As we know in our question it is given that Amit’s scored 10 marks less than Joseph. It means Amit score is equal to Joseph Score minus 10 . Let’s take a variable x for joseph marks and Amit marks is x-10. Ali marks is 15 more than joseph so the linear equation for it is +15 . Hence for total marks you have to add marks of all Amit’s, Joseph and Ali.
Complete step by step solution:
Suppose Joseph marks in examination is x
Step 1: let’s start as we know marks obtained by Amit is 10 less than Joseph marks so linear equation is
= $x - 10$
Secondly, marks obtained by Ali are 15 more than Joseph marks. Hence linear equation for it is
= $x + 15$
Step 2: Let's move toward second part of this question Total marks obtained by Ali, Amit and Joseph is
\[\begin{array}{l}
& = x - 10 + x + x + 15\\
& = 3x + 5\\
3x + 5 & = 245\\
\,\,\,\,\,\,\,\,3x & = 240\\
\,\,\,\,\,\,\,\,\,\,\,\,x & = 80
\end{array}\]
Hence marks obtained by Joseph are 80 and marks obtained by Amit are 70.
Marks obtained by Amit’s is 70
Note:
In this type of you must know how to frame linear equations from word problems. Special attention must give on more than or less than. In case of more than you always add and in case of less than you always subtract. For making mathematical equations you have to suppose some variable like x, y, z.
Recently Updated Pages
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Trending doubts
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Which one of the following is a leguminous crop A Pulses class 8 social science CBSE
What is the cultivation of grapes called class 8 biology CBSE
State the differences between manure and fertilize class 8 biology CBSE
Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE