Answer
Verified
472.8k+ views
Hint: Here, the height of the first aeroplane is given and we have to find how high this aeroplane is from the airplane whose height is not known. First find the distance of the observation point from the aeroplanes using the angle of elevation and the height given by using the formula, $\tan \theta = \dfrac{{\text{P}}}{{\text{B}}}$. Then find the height of the other aeroplane by using the same formula. Then subtract this height from the given height and you’ll get the answer.
Complete step-by-step answer:
Given, the height of first aeroplane PS =$3000$ m whose angle of elevation from the observation point is $\angle {\text{PQS = 60}}^\circ $ .The second aeroplane has height PR= h m and the angle of elevation from observation point is $\angle {\text{PQR = 45}}^\circ $.We have to find the height of second plane from first aeroplane RS.
Let the distance of the observation point from both the planes PQ be x m. Then in right angled triangle SPQ,
$ \Rightarrow \tan \theta = \dfrac{{{\text{PS}}}}{{{\text{PQ}}}}$ $\left[ {{\text{as tan}}\theta {\text{ = }}\dfrac{{\text{P}}}{{\text{B}}}} \right]$
On putting the given values, we get-
$ \Rightarrow \tan {60^ \circ } = \dfrac{{3000}}{{\text{x}}} \Rightarrow \sqrt 3 = \dfrac{{3000}}{{\text{x}}}$
On rationalizing and solving for x, we get-
$ \Rightarrow {\text{x = }}\dfrac{{3000 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = \dfrac{{3000\sqrt 3 }}{3} = 1000\sqrt 3 $ m
Now we need to find the height of the second aeroplane. So in right angled triangle RPQ,
$ \Rightarrow \tan {45^ \circ } = \dfrac{{{\text{PR}}}}{{{\text{PQ}}}}$ $ \Rightarrow 1 = \dfrac{{\text{h}}}{{\text{x}}} \Rightarrow {\text{h = x}}$
Since we know the value of x, we put it in the equation-
$ \Rightarrow {\text{h = 1000}} \times {\text{1}}{\text{.732 = 1732}}$ m
Now we have to find the height of the second aeroplane from first. So,
$ \Rightarrow {\text{RS = PS - PR}}$
On putting the given values, we get-
$ \Rightarrow {\text{RS = 3000 - 1732 = 1268}}$ m
Hence the first aeroplane is $1268$ m high from the second aeroplane.
Note: To solve this type of question, we have to draw the correct diagram. Hence it is important to read the statement carefully. In this question, the formula of $\tan \theta $ is used because one quantity is given and we have to find the other quantity and angle is also given. Here, P stands for perpendicular and B stands for base of triangle.
Complete step-by-step answer:
Given, the height of first aeroplane PS =$3000$ m whose angle of elevation from the observation point is $\angle {\text{PQS = 60}}^\circ $ .The second aeroplane has height PR= h m and the angle of elevation from observation point is $\angle {\text{PQR = 45}}^\circ $.We have to find the height of second plane from first aeroplane RS.
Let the distance of the observation point from both the planes PQ be x m. Then in right angled triangle SPQ,
$ \Rightarrow \tan \theta = \dfrac{{{\text{PS}}}}{{{\text{PQ}}}}$ $\left[ {{\text{as tan}}\theta {\text{ = }}\dfrac{{\text{P}}}{{\text{B}}}} \right]$
On putting the given values, we get-
$ \Rightarrow \tan {60^ \circ } = \dfrac{{3000}}{{\text{x}}} \Rightarrow \sqrt 3 = \dfrac{{3000}}{{\text{x}}}$
On rationalizing and solving for x, we get-
$ \Rightarrow {\text{x = }}\dfrac{{3000 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = \dfrac{{3000\sqrt 3 }}{3} = 1000\sqrt 3 $ m
Now we need to find the height of the second aeroplane. So in right angled triangle RPQ,
$ \Rightarrow \tan {45^ \circ } = \dfrac{{{\text{PR}}}}{{{\text{PQ}}}}$ $ \Rightarrow 1 = \dfrac{{\text{h}}}{{\text{x}}} \Rightarrow {\text{h = x}}$
Since we know the value of x, we put it in the equation-
$ \Rightarrow {\text{h = 1000}} \times {\text{1}}{\text{.732 = 1732}}$ m
Now we have to find the height of the second aeroplane from first. So,
$ \Rightarrow {\text{RS = PS - PR}}$
On putting the given values, we get-
$ \Rightarrow {\text{RS = 3000 - 1732 = 1268}}$ m
Hence the first aeroplane is $1268$ m high from the second aeroplane.
Note: To solve this type of question, we have to draw the correct diagram. Hence it is important to read the statement carefully. In this question, the formula of $\tan \theta $ is used because one quantity is given and we have to find the other quantity and angle is also given. Here, P stands for perpendicular and B stands for base of triangle.
Recently Updated Pages
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
The equations of two equal sides AB AC of an isosceles class 11 maths JEE_Main
If two curves whose equations are ax2 + 2hxy + by2 class 11 maths JEE_Main
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE