Answer
Verified
468.6k+ views
Hint: First find out the normality concentration of oxalic acid. Then using the formula ${N_1}{V_1} = {N_2}{V_2}$ you can find out the volume of NaOH required for complete neutralisation.
Complete answer:
-Normality: $N = \dfrac{{weight}}{{Eq.wt.}} \times \dfrac{{1000}}{{V(mL)}}$ (1)
Where eq.wt. is the equivalent weight.
Complete step by step answer:
-Oxalic acid has a molecular formula of: $HOOC - COOH$ or ${C_2}{H_2}{O_4}$. Oxalic acid dihydrate has a formula of ${C_2}{H_2}{O_4}.2{H_2}O$
Molecular weight of ${C_2}{H_2}{O_4}.2{H_2}O$ is = 90 + 18(2) = 126 g/mole
-To find the volume of NaOH required to neutralise 10 mL oxalic acid solution we will be using the following formula:
${N_1}{V_1} = {N_2}{V_2}$ (2)
Where ${N_1}$, ${V_1}$ are normality and volume for oxalic acid and ${N_2}$, ${V_2}$ are normality and volume for NaOH base.
-So, first we need to find out the normality of oxalic acid.
Since oxalic acid has 2 H atoms that it can lose to show acidic character, it means that n-factor for oxalic acid dihydrate is = 2. Its molecular weight is 126 g/mole.
Equivalent weight of oxalic acid = molecular weight / n-factor
= 126 / 2
= 63
The weight given in the question = 6.3 g
Using equation (1) we will find out the normality of oxalic acid dihydrate:
$N = \dfrac{{weight}}{{Eq.wt.}} \times \dfrac{{1000}}{{V(mL)}}$
= $\dfrac{{6.3}}{{63}} \times \dfrac{{1000}}{{250}}$
= 0.4 N
-Now we will use equation (2) to find out the volume of NaOH required for complete neutralisation.
The question gives the value of: ${N_1}$ = 0.4 N (calculated above), ${V_1}$ = 10 mL and ${N_2}$= 0.1 N. We need to find out the value of ${V_2}$.
${N_1}{V_1} = {N_2}{V_2}$
0.4×10 = 0.1×${V_2}$
${V_2} = \dfrac{{0.4 \times 10}}{{0.1}}$
= 40 mL
So, the volume of 0.1 N NaOH required to neutralise 0.4 N and 10 mL solution of oxalic acid dihydrate is 40 mL.
So, the correct answer is “Option A”.
Note: The molecular formula of oxalic acid is ${C_2}{H_2}{O_4}$ and its molecular weight is 90 g/mole while that of oxalic acid dihydrate is ${C_2}{H_2}{O_4}.2{H_2}O$ and molecular weight is 126 g/mole. Although both will have the same value of n-factor to be 2, they will have different equivalent weights due to difference in molecular weight. So while calculating the normality in this question use molecular weight to be 126 g/mole.
Complete answer:
-Normality: $N = \dfrac{{weight}}{{Eq.wt.}} \times \dfrac{{1000}}{{V(mL)}}$ (1)
Where eq.wt. is the equivalent weight.
Complete step by step answer:
-Oxalic acid has a molecular formula of: $HOOC - COOH$ or ${C_2}{H_2}{O_4}$. Oxalic acid dihydrate has a formula of ${C_2}{H_2}{O_4}.2{H_2}O$
Molecular weight of ${C_2}{H_2}{O_4}.2{H_2}O$ is = 90 + 18(2) = 126 g/mole
-To find the volume of NaOH required to neutralise 10 mL oxalic acid solution we will be using the following formula:
${N_1}{V_1} = {N_2}{V_2}$ (2)
Where ${N_1}$, ${V_1}$ are normality and volume for oxalic acid and ${N_2}$, ${V_2}$ are normality and volume for NaOH base.
-So, first we need to find out the normality of oxalic acid.
Since oxalic acid has 2 H atoms that it can lose to show acidic character, it means that n-factor for oxalic acid dihydrate is = 2. Its molecular weight is 126 g/mole.
Equivalent weight of oxalic acid = molecular weight / n-factor
= 126 / 2
= 63
The weight given in the question = 6.3 g
Using equation (1) we will find out the normality of oxalic acid dihydrate:
$N = \dfrac{{weight}}{{Eq.wt.}} \times \dfrac{{1000}}{{V(mL)}}$
= $\dfrac{{6.3}}{{63}} \times \dfrac{{1000}}{{250}}$
= 0.4 N
-Now we will use equation (2) to find out the volume of NaOH required for complete neutralisation.
The question gives the value of: ${N_1}$ = 0.4 N (calculated above), ${V_1}$ = 10 mL and ${N_2}$= 0.1 N. We need to find out the value of ${V_2}$.
${N_1}{V_1} = {N_2}{V_2}$
0.4×10 = 0.1×${V_2}$
${V_2} = \dfrac{{0.4 \times 10}}{{0.1}}$
= 40 mL
So, the volume of 0.1 N NaOH required to neutralise 0.4 N and 10 mL solution of oxalic acid dihydrate is 40 mL.
So, the correct answer is “Option A”.
Note: The molecular formula of oxalic acid is ${C_2}{H_2}{O_4}$ and its molecular weight is 90 g/mole while that of oxalic acid dihydrate is ${C_2}{H_2}{O_4}.2{H_2}O$ and molecular weight is 126 g/mole. Although both will have the same value of n-factor to be 2, they will have different equivalent weights due to difference in molecular weight. So while calculating the normality in this question use molecular weight to be 126 g/mole.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE