
An aqueous solution of urea containing 18 g urea in 1500 of the solution has a density equal to 1.052. If the molecular weight of urea is 60, the molality of the solution is:
A. 0.200 m
B. 0.192 m
C. 0.100 m
D. 1.200 m
Answer
585.3k+ views
Hint: Molality is the ratio of number of moles of solute to the mass of solvent in kilograms.
We will first find the moles of urea, which is the ratio of mass to molar mass.
Complete step by step answer:
- As we know that density is the ratio of mass to volume.
- We are provided with density = 1.052 g/ml, so we can say that 1500 ml of solution corresponds to $1.052 g/ml\times 1500 ml = 1578 g$
- Molar mass of urea is 60 g/mol
- We will find the number of moles of urea, which is the ratio of mass to molar mass. It is:
\[\begin{align}
& \frac{18g}{60g/mol} \\
& =0.3mol \\
\end{align}\]
- We know that molality is the ratio of number of moles of solute to the mass of solvent. Hence, we can write, mass of water = 1575 g - 18 g = 1560 g
We will convert 1560 gram to kilogram= 1.560 kg, as (1 kg = 1000 g)
-Now, we will calculate molality as:
\[Molality=\frac{number\text{ }of\text{ }moles\text{ }of\text{ }urea}{mass\text{ }of\text{ }water\text{ }in\text{ }kg}\]
\[Molality=\frac{0.3} {\begin{align}
&1.560 \\ \end{align}}\] $= 0.192 m$
Hence, we can conclude that the correct option is (B), that is the molality of the solution is 0.192 m.
Note: We must not forget to write units after solving any question, here the unit of molality is m. We must convert the mass of the solvent given in grams into kilograms. We should not get confused in the terms molality and molarity. Molality is the ratio of number of moles of solute to the mass of solvent in kilograms. Whereas, molarity is the moles of a solute per litres of solution.
We will first find the moles of urea, which is the ratio of mass to molar mass.
Complete step by step answer:
- As we know that density is the ratio of mass to volume.
- We are provided with density = 1.052 g/ml, so we can say that 1500 ml of solution corresponds to $1.052 g/ml\times 1500 ml = 1578 g$
- Molar mass of urea is 60 g/mol
- We will find the number of moles of urea, which is the ratio of mass to molar mass. It is:
\[\begin{align}
& \frac{18g}{60g/mol} \\
& =0.3mol \\
\end{align}\]
- We know that molality is the ratio of number of moles of solute to the mass of solvent. Hence, we can write, mass of water = 1575 g - 18 g = 1560 g
We will convert 1560 gram to kilogram= 1.560 kg, as (1 kg = 1000 g)
-Now, we will calculate molality as:
\[Molality=\frac{number\text{ }of\text{ }moles\text{ }of\text{ }urea}{mass\text{ }of\text{ }water\text{ }in\text{ }kg}\]
\[Molality=\frac{0.3} {\begin{align}
&1.560 \\ \end{align}}\] $= 0.192 m$
Hence, we can conclude that the correct option is (B), that is the molality of the solution is 0.192 m.
Note: We must not forget to write units after solving any question, here the unit of molality is m. We must convert the mass of the solvent given in grams into kilograms. We should not get confused in the terms molality and molarity. Molality is the ratio of number of moles of solute to the mass of solvent in kilograms. Whereas, molarity is the moles of a solute per litres of solution.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

