Answer
Verified
458.7k+ views
Hint: When a satellite is thrown into the orbit of the earth, it experiences gravitational pull. And when the centrifugal force is balanced out by the gravitational force, it starts to revolve around the earth in a certain orbit.
The velocity with which a satellite revolves around the earth is known as orbital velocity. And Time taken to complete one revolution around the earth by satellite is known as the Time period.
Complete step by step answer:
Write the expression of the orbital speed \[{v_0}\] for an artificial satellite,
\[{v_0} = \sqrt {\dfrac{{GM}}{{R + h}}} \]
Here, \[M\] is the mass of earth, \[G\] is the gravitational constant, \[R\] is the radius of the earth and \[h\] is the height of the satellite from the earth.
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\], \[6.67 \times {10^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}}\] for\[G\], \[6 \times {10^{24}}{\text{kg}}\] for \[M\] and \[1000{\text{ km}}\] for\[h\].
\[\
{v_0} = \sqrt {\dfrac{{(6.67 \times {{10}^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}})(6 \times {{10}^{24}}{\text{kg)}}}}{{(6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right){\text{)}}}}} \\
= 7364\;{\text{m}}{{\text{s}}^{ - 1}} \\
\ \]
Write the expression for the Period of revolution \[T\] of satellite.
\[T = \dfrac{{2\pi (R + h)}}{{{v_0}}}\]
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\],\[1000{\text{ km}}\] for \[h\] and \[7364\;{\text{m}}{{\text{s}}^{ - 1}}\] for \[{v_0}\]
\[\
T = \dfrac{{2\pi (6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right))}}{{7364\;{\text{m}}{{\text{s}}^{ - 1}}}} \\
= 6297{\text{ s}} \\
\ \]
Therefore,\[7364\;{\text{m}}{{\text{s}}^{ - 1}}\], \[6297{\text{ s}}\]are orbital speed and period of revolution of the satellite respectively.
So, the correct answer is “Option A”.
Note:
The expression for the orbital velocity is used to calculate the orbital velocity of the satellite and the expression for the Time period is used to calculate the period of revolution.
Standardize the units of the values used in the expressions of Orbital velocity and time period.
The velocity with which a satellite revolves around the earth is known as orbital velocity. And Time taken to complete one revolution around the earth by satellite is known as the Time period.
Complete step by step answer:
Write the expression of the orbital speed \[{v_0}\] for an artificial satellite,
\[{v_0} = \sqrt {\dfrac{{GM}}{{R + h}}} \]
Here, \[M\] is the mass of earth, \[G\] is the gravitational constant, \[R\] is the radius of the earth and \[h\] is the height of the satellite from the earth.
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\], \[6.67 \times {10^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}}\] for\[G\], \[6 \times {10^{24}}{\text{kg}}\] for \[M\] and \[1000{\text{ km}}\] for\[h\].
\[\
{v_0} = \sqrt {\dfrac{{(6.67 \times {{10}^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}})(6 \times {{10}^{24}}{\text{kg)}}}}{{(6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right){\text{)}}}}} \\
= 7364\;{\text{m}}{{\text{s}}^{ - 1}} \\
\ \]
Write the expression for the Period of revolution \[T\] of satellite.
\[T = \dfrac{{2\pi (R + h)}}{{{v_0}}}\]
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\],\[1000{\text{ km}}\] for \[h\] and \[7364\;{\text{m}}{{\text{s}}^{ - 1}}\] for \[{v_0}\]
\[\
T = \dfrac{{2\pi (6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right))}}{{7364\;{\text{m}}{{\text{s}}^{ - 1}}}} \\
= 6297{\text{ s}} \\
\ \]
Therefore,\[7364\;{\text{m}}{{\text{s}}^{ - 1}}\], \[6297{\text{ s}}\]are orbital speed and period of revolution of the satellite respectively.
So, the correct answer is “Option A”.
Note:
The expression for the orbital velocity is used to calculate the orbital velocity of the satellite and the expression for the Time period is used to calculate the period of revolution.
Standardize the units of the values used in the expressions of Orbital velocity and time period.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE