Answer
Verified
465k+ views
Hint: The elastic energy stored in a material is nothing but its potential energy. This potential energy per unit volume is mathematically the product of half times the stress and strain. And Young’s modulus is nothing but the ratio of linear stress over strain. Using these concepts we can find the required answer.
Formula Used:
Young’s Modulus, $Y = \dfrac{{{\text{Stress}}}}{{{\text{Strain}}}}$
Elastic Energy per unit volume, $E = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}}$
Complete step by step answer:
Young's modulus is a mechanical property of a solid material that measures the stiffness of that material. It can be defined as the relationship between stress (force per unit area) and strain (proportional deformation) in a material in the linear elasticity regime of uniaxial deformation.
Now, Young’s modulus is derived from Hooke’s law for small deformations i.e., if the deformation is small, the stress in a body is proportional to the corresponding strain.
Mathematically,
$\dfrac{{{\text{Tensile stress}}}}{{{\text{Tensile strain}}}} = Y$
where Y is a constant for a given material. This ratio of tensile stress over tensile strain is called Young’s modulus for the material.
Given:
Young’s Modulus of the material = Y
Stress on the material = S
Elastic Energy per unit volume on this material will be:
$E = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}} \cdots \cdots \cdots \left( 1 \right)$
But we know that:
$\eqalign{
& Y = \dfrac{{{\text{Stress}}}}{{{\text{Strain}}}} \cr
& \Rightarrow S = Y \times {\text{strain }}\left[ {\because {\text{Stress}} = S\left( {given} \right)} \right] \cr
& \therefore {\text{ strain}} = \dfrac{S}{Y} \cr} $
Substituting the value of strain in equation (1) we get:
$\eqalign{
& E = \dfrac{1}{2} \times {\text{S}} \times \dfrac{S}{Y} \cr
& E = \dfrac{{{S^2}}}{{2Y}} \cr} $
Therefore, the correct option is B i.e., the elastic energy stored per unit volume of the material is $\dfrac{{{S^2}}}{{2Y}}$
Note: The elastic energy is also known as elastic potential energy of a strained body because this energy is in the form of potential energy and will be converted into some other form of energy such as kinetic or sound energy, when the object is allowed to return to its original shape.
Formula Used:
Young’s Modulus, $Y = \dfrac{{{\text{Stress}}}}{{{\text{Strain}}}}$
Elastic Energy per unit volume, $E = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}}$
Complete step by step answer:
Young's modulus is a mechanical property of a solid material that measures the stiffness of that material. It can be defined as the relationship between stress (force per unit area) and strain (proportional deformation) in a material in the linear elasticity regime of uniaxial deformation.
Now, Young’s modulus is derived from Hooke’s law for small deformations i.e., if the deformation is small, the stress in a body is proportional to the corresponding strain.
Mathematically,
$\dfrac{{{\text{Tensile stress}}}}{{{\text{Tensile strain}}}} = Y$
where Y is a constant for a given material. This ratio of tensile stress over tensile strain is called Young’s modulus for the material.
Given:
Young’s Modulus of the material = Y
Stress on the material = S
Elastic Energy per unit volume on this material will be:
$E = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}} \cdots \cdots \cdots \left( 1 \right)$
But we know that:
$\eqalign{
& Y = \dfrac{{{\text{Stress}}}}{{{\text{Strain}}}} \cr
& \Rightarrow S = Y \times {\text{strain }}\left[ {\because {\text{Stress}} = S\left( {given} \right)} \right] \cr
& \therefore {\text{ strain}} = \dfrac{S}{Y} \cr} $
Substituting the value of strain in equation (1) we get:
$\eqalign{
& E = \dfrac{1}{2} \times {\text{S}} \times \dfrac{S}{Y} \cr
& E = \dfrac{{{S^2}}}{{2Y}} \cr} $
Therefore, the correct option is B i.e., the elastic energy stored per unit volume of the material is $\dfrac{{{S^2}}}{{2Y}}$
Note: The elastic energy is also known as elastic potential energy of a strained body because this energy is in the form of potential energy and will be converted into some other form of energy such as kinetic or sound energy, when the object is allowed to return to its original shape.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE