Answer
Verified
453k+ views
Hint: Angular velocity of the motor is the rate of rotation of the conductors associated in the motor with respect to time. It is denoted by $\omega $ and is abbreviated as omega. It is measured in radians per seconds. The frequency is the rate at which the conductor occupies the pre-defined space in the motor. It is denoted by f and is measured in Hertz.
Here in the question, we need to determine the frequency of rotation of the motor such that the angular velocity of the electric motor is given as 125 radians per seconds. For this, we will use the general relation between the angular speed and the frequency as $\omega = 2\pi f$.
Complete step by step answer:
The angular velocity of the conductor in an electric motor is the product of the frequency of the rotation of the motor and the total circular radian. Mathematically, $\omega = 2\pi f$ where, $\omega $ is in radian per seconds and $f$ is in Hertz.
Here, $\omega = 125{\text{ rad/sec}}$ so, substituting the same in the formula $\omega = 2\pi f$ to determine the frequency of rotation.
$
\omega = 2\pi f \\
125 = 2\pi f \\
f = \dfrac{{125 \times 7}}{{2 \times 22}} \\
= \dfrac{{875}}{{44}} \\
= 19.88{\text{ Hz}} \\
\approx {\text{20 Hz}} \\
$
Hence, the frequency of rotation of an electric motor of 12 horsepower generates an angular velocity of 125 radians per second is 20 Hz.
Option A is correct.
Note: It is interesting to note here that the power rating of the electric motor has been given in the question is of no use. It is just added as an added information
Here in the question, we need to determine the frequency of rotation of the motor such that the angular velocity of the electric motor is given as 125 radians per seconds. For this, we will use the general relation between the angular speed and the frequency as $\omega = 2\pi f$.
Complete step by step answer:
The angular velocity of the conductor in an electric motor is the product of the frequency of the rotation of the motor and the total circular radian. Mathematically, $\omega = 2\pi f$ where, $\omega $ is in radian per seconds and $f$ is in Hertz.
Here, $\omega = 125{\text{ rad/sec}}$ so, substituting the same in the formula $\omega = 2\pi f$ to determine the frequency of rotation.
$
\omega = 2\pi f \\
125 = 2\pi f \\
f = \dfrac{{125 \times 7}}{{2 \times 22}} \\
= \dfrac{{875}}{{44}} \\
= 19.88{\text{ Hz}} \\
\approx {\text{20 Hz}} \\
$
Hence, the frequency of rotation of an electric motor of 12 horsepower generates an angular velocity of 125 radians per second is 20 Hz.
Option A is correct.
Note: It is interesting to note here that the power rating of the electric motor has been given in the question is of no use. It is just added as an added information
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE