An electron starting from rest has a velocity that increases linearly with time. I.e $v = kt$, where $k = 2m/{s^2}$. The distance covered in the first three distances will be,
a. $36m$
b. $27m$
c. $18m$
d. $9m$
Answer
Verified
448.8k+ views
Hint: In the question, the velocity value is given. The velocity can be determined by dividing the displacement and time. We need to use integration to solve the problem.
Formula used:
To find the velocity:
$ \Rightarrow \text{velocity} = \dfrac{\text{displacement}}{\text{time}}$
The velocity formula in terms of integration:
\[ \Rightarrow dv = \dfrac{{dx}}{{dt}}\]
Where $dv$ is the velocity, $dx$ is the displacement and $dt$ is the time.
Complete step by step answer:
We have the value of an electron that starts from the rest has the velocity of which increases linearly with the time. That is the velocity has the value of $v = kt$. We have the value of $k$. The value of $k$ is $k = 2m/{s^2}$.
To solve the given problem we can integrate the velocity to get the answer.
We have,
$ \Rightarrow v = kt$
Substitute the value of velocity. We have,
$ \Rightarrow \text{velocity} = \dfrac{\text{displacement}}{\text{time}}$
The velocity formula in terms of integration:
\[ \Rightarrow dv = \dfrac{{dx}}{{dt}}\]
Where $dv$ is the velocity, $dx$ is the displacement and $dt$ is the time.
We have,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = kt\]
Integrate on both the sides. We get,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int {kt} \]
In left hand side we are going integrate the value of $k$ with respect to $t$. That is,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int {kt} .dt\]
The limits in the left-hand side will be the value of $t$. The lower limit has the value of $t$ zero, as it is the initial seconds and the upper limit has the value of three.
Substitute the limits in the equation, we get,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int\limits_{t = 0}^{t = 3} {kt} .dt\]
Integrate the equation with respect to time in both the sides we get,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int\limits_{t = 0}^{t = 3} {kt} .dt\]
\[ \Rightarrow x = k\left[ {\dfrac{{{t^2}}}{2}} \right]_0^3\]
Substitute the limits in place of $t$ we get,
\[ \Rightarrow x = k\left[ {\dfrac{{{3^2}}}{2} - 0} \right]\]
Take square on three we get nine. That is,
\[ \Rightarrow x = k\left[ {\dfrac{9}{2} - 0} \right]\]
Substitute the value of $k$. We get,
\[ \Rightarrow x = 2\left[ {\dfrac{9}{2} - 0} \right]\]
Cancel out the common term we get,
\[ \Rightarrow x = 2 \times \dfrac{9}{2}\]
$ \Rightarrow x = 9$
Therefore, the distance covered in the first three distances will be equal to $9m$
$\therefore x = 9m$
Hence, the correct answer is option (D).
Note: While doing the integration, when we substitute the limits in the integrated part always remember that first we need to substitute the upper limit and then we need to substitute the lower limit.
Formula used:
To find the velocity:
$ \Rightarrow \text{velocity} = \dfrac{\text{displacement}}{\text{time}}$
The velocity formula in terms of integration:
\[ \Rightarrow dv = \dfrac{{dx}}{{dt}}\]
Where $dv$ is the velocity, $dx$ is the displacement and $dt$ is the time.
Complete step by step answer:
We have the value of an electron that starts from the rest has the velocity of which increases linearly with the time. That is the velocity has the value of $v = kt$. We have the value of $k$. The value of $k$ is $k = 2m/{s^2}$.
To solve the given problem we can integrate the velocity to get the answer.
We have,
$ \Rightarrow v = kt$
Substitute the value of velocity. We have,
$ \Rightarrow \text{velocity} = \dfrac{\text{displacement}}{\text{time}}$
The velocity formula in terms of integration:
\[ \Rightarrow dv = \dfrac{{dx}}{{dt}}\]
Where $dv$ is the velocity, $dx$ is the displacement and $dt$ is the time.
We have,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = kt\]
Integrate on both the sides. We get,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int {kt} \]
In left hand side we are going integrate the value of $k$ with respect to $t$. That is,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int {kt} .dt\]
The limits in the left-hand side will be the value of $t$. The lower limit has the value of $t$ zero, as it is the initial seconds and the upper limit has the value of three.
Substitute the limits in the equation, we get,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int\limits_{t = 0}^{t = 3} {kt} .dt\]
Integrate the equation with respect to time in both the sides we get,
\[ \Rightarrow \int {\dfrac{{dx}}{{dt}}} = \int\limits_{t = 0}^{t = 3} {kt} .dt\]
\[ \Rightarrow x = k\left[ {\dfrac{{{t^2}}}{2}} \right]_0^3\]
Substitute the limits in place of $t$ we get,
\[ \Rightarrow x = k\left[ {\dfrac{{{3^2}}}{2} - 0} \right]\]
Take square on three we get nine. That is,
\[ \Rightarrow x = k\left[ {\dfrac{9}{2} - 0} \right]\]
Substitute the value of $k$. We get,
\[ \Rightarrow x = 2\left[ {\dfrac{9}{2} - 0} \right]\]
Cancel out the common term we get,
\[ \Rightarrow x = 2 \times \dfrac{9}{2}\]
$ \Rightarrow x = 9$
Therefore, the distance covered in the first three distances will be equal to $9m$
$\therefore x = 9m$
Hence, the correct answer is option (D).
Note: While doing the integration, when we substitute the limits in the integrated part always remember that first we need to substitute the upper limit and then we need to substitute the lower limit.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE