Answer
Verified
462.6k+ views
Hint:-The electromagnetic force or e.m.f generated due to inductance will be such that the generated e.m.f will oppose the voltage difference which is present across the terminals of the inductor. As a result the flow of current will also be affected.
Formula used: The formula of the e.m.f is developed due to inductance and change in current for some interval of time is given by,
$E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
Where E is the electromagnetic force or e.m.f, L is the inductance I is the current and t is the time taken.
Complete step-by-step solution:It is given in the problem that a self-inductor generates an e.m.f of 5 volt if the change of current takes place in the time interval of 1 millisecond and the happens from 3A to 2A and we need to find out the value of self-inductance of the inductor.
As the e.m.f of the inductor is given by,
$E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
Where E is the electromagnetic force or e.m.f, L is the inductance I is the current and t is the time taken.
Let us calculate the value of the self-inductance.
$ \Rightarrow E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
Replace the value of the e.m.f equal to 5 volts $dI$ is the change in the current and $dt$ is the change in the time.
$ \Rightarrow E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
As the e.m.f is equal to $E = 5{\text{ volts}}$ the change in the current is $dI = \left( {2 - 3} \right)A$ and $dt = {10^{ - 3}}s$.
$ \Rightarrow 5 = - L \cdot \left( {\dfrac{{2 - 3}}{{{{10}^{ - 3}}}}} \right)$
$ \Rightarrow 5 = - L \cdot \left( {\dfrac{{ - 1}}{{{{10}^{ - 3}}}}} \right)$
$ \Rightarrow 5 = \dfrac{L}{{{{10}^{ - 3}}}}$
$ \Rightarrow L = 5 \times {10^{ - 3}}$
$ \Rightarrow L = 5mH$
The self-inductance is equal to$L = 5mH$. The correct answer for this problem is option D.
Note:- The negative sign in the formula for the calculation electromagnetic force or e.m.f shows that the generated e.m.f will oppose the potential difference across the terminals of the inductor. As the time increases the e.m.f generated by the inductor will increase the resistance against the potential difference.
Formula used: The formula of the e.m.f is developed due to inductance and change in current for some interval of time is given by,
$E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
Where E is the electromagnetic force or e.m.f, L is the inductance I is the current and t is the time taken.
Complete step-by-step solution:It is given in the problem that a self-inductor generates an e.m.f of 5 volt if the change of current takes place in the time interval of 1 millisecond and the happens from 3A to 2A and we need to find out the value of self-inductance of the inductor.
As the e.m.f of the inductor is given by,
$E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
Where E is the electromagnetic force or e.m.f, L is the inductance I is the current and t is the time taken.
Let us calculate the value of the self-inductance.
$ \Rightarrow E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
Replace the value of the e.m.f equal to 5 volts $dI$ is the change in the current and $dt$ is the change in the time.
$ \Rightarrow E = - L \cdot \left( {\dfrac{{dI}}{{dt}}} \right)$
As the e.m.f is equal to $E = 5{\text{ volts}}$ the change in the current is $dI = \left( {2 - 3} \right)A$ and $dt = {10^{ - 3}}s$.
$ \Rightarrow 5 = - L \cdot \left( {\dfrac{{2 - 3}}{{{{10}^{ - 3}}}}} \right)$
$ \Rightarrow 5 = - L \cdot \left( {\dfrac{{ - 1}}{{{{10}^{ - 3}}}}} \right)$
$ \Rightarrow 5 = \dfrac{L}{{{{10}^{ - 3}}}}$
$ \Rightarrow L = 5 \times {10^{ - 3}}$
$ \Rightarrow L = 5mH$
The self-inductance is equal to$L = 5mH$. The correct answer for this problem is option D.
Note:- The negative sign in the formula for the calculation electromagnetic force or e.m.f shows that the generated e.m.f will oppose the potential difference across the terminals of the inductor. As the time increases the e.m.f generated by the inductor will increase the resistance against the potential difference.
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE