Answer
Verified
462.3k+ views
Hint: First use the property of the equilateral triangle after constructing an altitude from the vertex D on the side BC. After that use the property of the subtended angle by an arc to get the desired result.
Complete step by step solution:
We have given an equilateral triangle of side $9$ cm inscribed in a circle.
The goal is to find the radius of the circle.
Now, draw a figure in which an equilateral triangle of side $9$ cm is inscribed in a circle. Then the figure is given as:
In the above figure, $BCD$ is an equilateral triangle which is inscribed in a circle whose center is $A$.
Since ABC is an equilateral triangle, then the altitude from its vertex to the corresponding side is the perpendicular bisector of the side even if it passes through the circumcenter of the triangle.
Now, for starting the problem we have made some construction. So, draw an altitude from the vertex $D$ on the side $BC$ at the point $O$, then the above figure becomes:
Now, take a look on the triangles $AOC$ and $AOB$,
$OC = OB$(D is the mid-point of BC)
$AB = AC$(Radius of the circle)
$AO = AO$(Common side of the triangle)
Therefore, using the $SSS$ rule of the congruency, we can say that the triangles $AOC$ and $AOB$ are congruent. That is
$\Delta AOC \cong \Delta AOB$
Then we have,
$\angle CAO = \angle BAO$
We know that the angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle. Then we can write,
$\angle CAB = 2\angle CDB$
As $\Delta BCD$ is an equilateral triangle, then each of its angles has a measure of $60^\circ $, thus
$\angle CDB = 60^\circ $
Using it we have,
$\angle CAB = 2 \times 60^\circ = 120^\circ $
Now, we can easily, break the angle $\angle CAB$ in the sum of two angles as:
$\angle CAB = \angle CAO + \angle BAO$
As we have$\angle CAO = \angle BAO$, then
\[\angle CAB = \angle CAO + \angle CAO\]
\[\angle CAB = 2\angle CAO\]
\[\angle CAO = \dfrac{1}{2}\left( {\angle CAB} \right)\]
Substitute the value $\angle CAB = 120^\circ $ into the equation:
\[\angle CAO = \dfrac{1}{2}\left( {120^\circ } \right)\]
\[\angle CAO = 60^\circ \]
As the altitude from the vertex D on the side, bisect the side BC, then
$CO = \dfrac{1}{2}\left( {CB} \right)$
Substitute the length of a side, $BC = 9$ into the equation:
\[CO = \dfrac{1}{2}\left( 9 \right) = \dfrac{9}{2}\]
Now, in the triangle CAO, we have
\[\angle CAO = 60^\circ \]and\[CO = \dfrac{9}{2}\]
Now, apply the trigonometric ratio in the triangle CAO, we have
$\sin A = \dfrac{{CO}}{{CA}}$
Substitute the values:
$\sin 60^\circ = \dfrac{{\dfrac{9}{2}}}{{CA}}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{9}{{2CA}}$
Solve the equation for $CA$,
\[CA = \dfrac{9}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }}\]
\[ \Rightarrow CA = 3\sqrt 3 \]cm
Therefore, the radius of the circle is $3\sqrt 3 $cm.
Note: The altitude drawn from the vertex on the side is perpendicular to the side and bisect it and also the altitude passes through the circumcenter of the triangle.
Complete step by step solution:
We have given an equilateral triangle of side $9$ cm inscribed in a circle.
The goal is to find the radius of the circle.
Now, draw a figure in which an equilateral triangle of side $9$ cm is inscribed in a circle. Then the figure is given as:
In the above figure, $BCD$ is an equilateral triangle which is inscribed in a circle whose center is $A$.
Since ABC is an equilateral triangle, then the altitude from its vertex to the corresponding side is the perpendicular bisector of the side even if it passes through the circumcenter of the triangle.
Now, for starting the problem we have made some construction. So, draw an altitude from the vertex $D$ on the side $BC$ at the point $O$, then the above figure becomes:
Now, take a look on the triangles $AOC$ and $AOB$,
$OC = OB$(D is the mid-point of BC)
$AB = AC$(Radius of the circle)
$AO = AO$(Common side of the triangle)
Therefore, using the $SSS$ rule of the congruency, we can say that the triangles $AOC$ and $AOB$ are congruent. That is
$\Delta AOC \cong \Delta AOB$
Then we have,
$\angle CAO = \angle BAO$
We know that the angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle. Then we can write,
$\angle CAB = 2\angle CDB$
As $\Delta BCD$ is an equilateral triangle, then each of its angles has a measure of $60^\circ $, thus
$\angle CDB = 60^\circ $
Using it we have,
$\angle CAB = 2 \times 60^\circ = 120^\circ $
Now, we can easily, break the angle $\angle CAB$ in the sum of two angles as:
$\angle CAB = \angle CAO + \angle BAO$
As we have$\angle CAO = \angle BAO$, then
\[\angle CAB = \angle CAO + \angle CAO\]
\[\angle CAB = 2\angle CAO\]
\[\angle CAO = \dfrac{1}{2}\left( {\angle CAB} \right)\]
Substitute the value $\angle CAB = 120^\circ $ into the equation:
\[\angle CAO = \dfrac{1}{2}\left( {120^\circ } \right)\]
\[\angle CAO = 60^\circ \]
As the altitude from the vertex D on the side, bisect the side BC, then
$CO = \dfrac{1}{2}\left( {CB} \right)$
Substitute the length of a side, $BC = 9$ into the equation:
\[CO = \dfrac{1}{2}\left( 9 \right) = \dfrac{9}{2}\]
Now, in the triangle CAO, we have
\[\angle CAO = 60^\circ \]and\[CO = \dfrac{9}{2}\]
Now, apply the trigonometric ratio in the triangle CAO, we have
$\sin A = \dfrac{{CO}}{{CA}}$
Substitute the values:
$\sin 60^\circ = \dfrac{{\dfrac{9}{2}}}{{CA}}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{9}{{2CA}}$
Solve the equation for $CA$,
\[CA = \dfrac{9}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }}\]
\[ \Rightarrow CA = 3\sqrt 3 \]cm
Therefore, the radius of the circle is $3\sqrt 3 $cm.
Note: The altitude drawn from the vertex on the side is perpendicular to the side and bisect it and also the altitude passes through the circumcenter of the triangle.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE