Answer
Verified
493.2k+ views
Hint – In this question join the center O with the vertices of the triangle and draw a perpendicular from vertex A onto the side BC. This perpendicular will bisect the side BC. Also OB, OC and OA will be the angle bisector of angle A, B and C. Use this concept to get the value of sides OB, OC or OA as they depict the radius of the circle.
Complete step-by-step solution -
Let ABC be the equilateral triangle inscribed in a circle with center O.
The side of the equilateral triangle is 9 cm (given).
Now join point OA, OB and OC which is the radius of the circle.
Let the radius of the circle be r cm.
Therefore OA = OB = OC = r cm.
Now draw the perpendicular from point A on side BC which cuts the line BC at point D as shown in figure.
Therefore, $BD = \dfrac{{BC}}{2} = \dfrac{9}{2} = 4.5$ cm
Now as we know that all the angles in the equilateral triangle are equal = 60 degree.
$ \Rightarrow \angle A = \angle B = \angle C = {60^0}$
Now OB is the bisector of angle B.
$ \Rightarrow \angle OBD = \dfrac{{\angle B}}{2} = {30^0}$
Now in the triangle OBD cos is the ratio of base to hypotenuse.
$ \Rightarrow \cos {30^0} = \dfrac{{4.5}}{r} = \dfrac{{\sqrt 3 }}{2}$, $\left[ {\because \cos {{30}^0} = \dfrac{{\sqrt 3 }}{2}} \right]$
Now simplify the above equation we have,
$ \Rightarrow r = \dfrac{9}{{\sqrt 3 }}$
Now multiply and divide by $\sqrt 3 $ we have,
$ \Rightarrow r = \dfrac{9}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = \dfrac{{9\sqrt 3 }}{3} = 3\sqrt 3 $ cm.
So the radius of the circle is $3\sqrt 3 $ cm.
Hence option (C) is correct.
Note – An equilateral triangle is one in which all the sides are equal, the interior angles of an equilateral triangle are all equal and in magnitude is of ${60^0}$, this happens as the angles opposite to equal sides are equal and the angle sum property of a triangle is ${180^0}$. Diagrammatic representation of the information provided is helpful as it helps figuring out the geometry and the triangles involved.
Complete step-by-step solution -
Let ABC be the equilateral triangle inscribed in a circle with center O.
The side of the equilateral triangle is 9 cm (given).
Now join point OA, OB and OC which is the radius of the circle.
Let the radius of the circle be r cm.
Therefore OA = OB = OC = r cm.
Now draw the perpendicular from point A on side BC which cuts the line BC at point D as shown in figure.
Therefore, $BD = \dfrac{{BC}}{2} = \dfrac{9}{2} = 4.5$ cm
Now as we know that all the angles in the equilateral triangle are equal = 60 degree.
$ \Rightarrow \angle A = \angle B = \angle C = {60^0}$
Now OB is the bisector of angle B.
$ \Rightarrow \angle OBD = \dfrac{{\angle B}}{2} = {30^0}$
Now in the triangle OBD cos is the ratio of base to hypotenuse.
$ \Rightarrow \cos {30^0} = \dfrac{{4.5}}{r} = \dfrac{{\sqrt 3 }}{2}$, $\left[ {\because \cos {{30}^0} = \dfrac{{\sqrt 3 }}{2}} \right]$
Now simplify the above equation we have,
$ \Rightarrow r = \dfrac{9}{{\sqrt 3 }}$
Now multiply and divide by $\sqrt 3 $ we have,
$ \Rightarrow r = \dfrac{9}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = \dfrac{{9\sqrt 3 }}{3} = 3\sqrt 3 $ cm.
So the radius of the circle is $3\sqrt 3 $ cm.
Hence option (C) is correct.
Note – An equilateral triangle is one in which all the sides are equal, the interior angles of an equilateral triangle are all equal and in magnitude is of ${60^0}$, this happens as the angles opposite to equal sides are equal and the angle sum property of a triangle is ${180^0}$. Diagrammatic representation of the information provided is helpful as it helps figuring out the geometry and the triangles involved.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India