
An iron rod appears to be $1m$ long when measured by a brass scale that is correct at both the rods at the time of observation being at ${20^0}C$ . Find the length of the iron rod at ${100^0}C$. ( ${\alpha _{iron}} = 1.2 \times {10^{ - 5}}{C^{ - 1}}$ and ${\alpha _{brass}} = 2 \times {10^{ - 5}}{C^{ - 1}}$ )
Answer
519k+ views
Hint:On heating or raising the temperature of an iron rod its length gets increased due to heating effect on its molecular level and the variation of change in length with temperature is given as $\Delta L = L\alpha \Delta T$ where, $\alpha $ is called coefficient of thermal linear expansion.
Complete step by step answer:
Let $L$ be the length of rod at ${20^0}C$ and increment in length be denoted as $\Delta L = L\alpha \Delta T$ where we know,
$\Delta T = {20^0}C$
And total appeared length of rod is given by:
$L + \Delta L = 1$
Put the value of $\Delta L = L\alpha \Delta T$ in above equation with given value of ${\alpha _{iron}} = 1.2 \times {10^{ - 5}}{C^{ - 1}}$
We get,
$L(1 + 1.2 \times {10^{ - 5}} \times 20) = 1$
$\Rightarrow L = \dfrac{1}{{(1 + 1.2 \times {{10}^{ - 5}} \times 20)}}$
$\Rightarrow L = 0.9997\,m$
Hence, the magnitude of length of rod at ${0^0}C$ is $L = 0.9997\,m$
Now, we will find the length of rod at ${100^0}C$
Since we know,
$L' = L(1 + \alpha \Delta T)$ Where,
$\Rightarrow L = 0.9997\,m$
$\Rightarrow \Delta T = 100 - 20 = {80^0}C$
$\Rightarrow {\alpha _{brass}} = 2 \times {10^{ - 5}}{C^{ - 1}}$
Putting the values of above parameters in the equation $L' = L(1 + \alpha \Delta T)$
We get,
$L' = 0.9997(1 + 2 \times {10^{ - 5}} \times 80)$
$\therefore L' = 1.00136\,m$
Hence, the magnitude of length of rod at ${100^0}C$ is $L' = 1.00136\,m$.
Note: It should be remembered that the rod expands linearly so the linear expansion of coefficient is used and the change in temperature is taken from initial temperature and final temperature. In case of expanding the rod the net increment of the length of the rod is directly proportional to the increase in temperature.
Complete step by step answer:
Let $L$ be the length of rod at ${20^0}C$ and increment in length be denoted as $\Delta L = L\alpha \Delta T$ where we know,
$\Delta T = {20^0}C$
And total appeared length of rod is given by:
$L + \Delta L = 1$
Put the value of $\Delta L = L\alpha \Delta T$ in above equation with given value of ${\alpha _{iron}} = 1.2 \times {10^{ - 5}}{C^{ - 1}}$
We get,
$L(1 + 1.2 \times {10^{ - 5}} \times 20) = 1$
$\Rightarrow L = \dfrac{1}{{(1 + 1.2 \times {{10}^{ - 5}} \times 20)}}$
$\Rightarrow L = 0.9997\,m$
Hence, the magnitude of length of rod at ${0^0}C$ is $L = 0.9997\,m$
Now, we will find the length of rod at ${100^0}C$
Since we know,
$L' = L(1 + \alpha \Delta T)$ Where,
$\Rightarrow L = 0.9997\,m$
$\Rightarrow \Delta T = 100 - 20 = {80^0}C$
$\Rightarrow {\alpha _{brass}} = 2 \times {10^{ - 5}}{C^{ - 1}}$
Putting the values of above parameters in the equation $L' = L(1 + \alpha \Delta T)$
We get,
$L' = 0.9997(1 + 2 \times {10^{ - 5}} \times 80)$
$\therefore L' = 1.00136\,m$
Hence, the magnitude of length of rod at ${100^0}C$ is $L' = 1.00136\,m$.
Note: It should be remembered that the rod expands linearly so the linear expansion of coefficient is used and the change in temperature is taken from initial temperature and final temperature. In case of expanding the rod the net increment of the length of the rod is directly proportional to the increase in temperature.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

