Answer
Verified
428.4k+ views
Hint: Acceleration of an object is defined as the rate of change of velocity of an object with respect to time. Velocity and acceleration of an object are vector quantities. If the acceleration of an object is constant it must move with constant velocity with respect to time.
Complete step by step solution:
We’ve been given that an object moves with constant acceleration $ a $ and we’ve been asked to find which expression from the option remains constant.
Since the acceleration of the object is constant, we can say that $ \vec a = {\text{constant}} $ . For the acceleration to be constant, both its magnitude and directions have to be constant. So we can write that the magnitude of the acceleration of the object $ \left| a \right| = {\text{constant}} $ .
Since $ \left| a \right| = \left| {\dfrac{{dv}}{{dt}}} \right| $ , and the magnitude of the acceleration i.e. the term on the left side is constant, the term on the right side of the equation will also be constant with time.
So option (B) is the correct choice.
Note:
Option (A) is incorrect because while the magnitude of the velocity is constant, its direction might change so the time derivative might have different directions as is the case in a circular motion. Option (C) is incorrect because there is no relation of acceleration with the time derivative of the square of the velocity which is given is mentioned in the option. Option (D) is also incorrect as it talks about the time derivative of the unit vector of velocity as $ \left( {\dfrac{v}{{\left| v \right|}}} \right) = \hat v $ which is related to the unit vector of acceleration and not acceleration itself.
Complete step by step solution:
We’ve been given that an object moves with constant acceleration $ a $ and we’ve been asked to find which expression from the option remains constant.
Since the acceleration of the object is constant, we can say that $ \vec a = {\text{constant}} $ . For the acceleration to be constant, both its magnitude and directions have to be constant. So we can write that the magnitude of the acceleration of the object $ \left| a \right| = {\text{constant}} $ .
Since $ \left| a \right| = \left| {\dfrac{{dv}}{{dt}}} \right| $ , and the magnitude of the acceleration i.e. the term on the left side is constant, the term on the right side of the equation will also be constant with time.
So option (B) is the correct choice.
Note:
Option (A) is incorrect because while the magnitude of the velocity is constant, its direction might change so the time derivative might have different directions as is the case in a circular motion. Option (C) is incorrect because there is no relation of acceleration with the time derivative of the square of the velocity which is given is mentioned in the option. Option (D) is also incorrect as it talks about the time derivative of the unit vector of velocity as $ \left( {\dfrac{v}{{\left| v \right|}}} \right) = \hat v $ which is related to the unit vector of acceleration and not acceleration itself.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE