Answer
Verified
451.2k+ views
Hint:Molar heat capacity requires heat to raise a temperature of one mole gas by one Kelvin. In this question, molar heat capacity at constant pressure is used. Here, nitrogen is a diatomic gas and water is the triatomic.
Complete step by step solution:
Here, it is given that the enthalpy of formation of ${{H}_{2}}O$, $\Delta {{H}_{f}}({{H}_{2}}O(g))$ is $-57.8\,kcal$.
The ${{C}_{p}}$ is $8.3$ and $11.3\,cal\,{{\deg }^{-1}}mo{{l}^{-1}}$
As we know, that ${{C}_{p}}$ is the specific heat at constant pressure.
${{N}_{2}}$ is the diatomic gas.
Total degree of freedom $=3\times n$
As ${{N}_{2}}$ is diatomic, total degree of freedom $=3\times 2=6$
${{H}_{2}}O$ is a triatomic gas.
Total degree of freedom $=3\times n\Rightarrow 3\times 3=9$
As ${{N}_{2}}$ is diatomic gas and ${{H}_{2}}O$ is a triatomic gas, therefore, the value of ${{C}_{p}}$ for ${{N}_{2}}$ is less than the value of ${{C}_{p}}$ for ${{H}_{2}}O$.
Therefore, the correct option is (B), that is, $8.3,11.3$
Additional information:
-The standard enthalpy of formation is defined as the enthalpy change during the formation of $1$ mole of substance. It is calculated in kilojoule per mole ($kJ\,mo{{l}^{-1}}$).
Factors that affect the standard enthalpy of formation is:
i.The partial pressure of gas
ii.Temperature of the system
-The concentration of reactant and product
-Heat capacity is defined as the amount of heat required to raise the temperature of a body by $1{}^\circ C$. It is an extreme property, and it is a path function denoted with$(c)$.
-Heat capacity for gas is molar heat capacity. It is the amount of heat required to raise the temperature of $1$ mole of substance by $1{}^\circ C$ or $1K$ .
-It is of two types:
i.Molar heat capacity at constant volume \[({{C}_{V}})\]
ii.Molar heat capacity at constant pressure $({{C}_{P}})$
There are features of heat capacity and they are as follows:
-Heat capacity can be positive, negative, zero or infinite.
-For solid and liquid, ${{C}_{P}}$ is nearly equal to \[{{C}_{V}}\] .
-Heat capacity of gas is more than the heat capacity of solid and liquid.
Note:
-Degree of freedom is the number of ways in which energy is distributed equally.
-Monoatomic gases contain a single atom. For example, $He,Ar$.
-Diatomic gases contain two atoms. For example, ${{H}_{2}},{{O}_{2}}$ .
-Triatomic gases contain three atoms. For example, ${{H}_{2}}O,C{{O}_{2}}$ .
Complete step by step solution:
Here, it is given that the enthalpy of formation of ${{H}_{2}}O$, $\Delta {{H}_{f}}({{H}_{2}}O(g))$ is $-57.8\,kcal$.
The ${{C}_{p}}$ is $8.3$ and $11.3\,cal\,{{\deg }^{-1}}mo{{l}^{-1}}$
As we know, that ${{C}_{p}}$ is the specific heat at constant pressure.
${{N}_{2}}$ is the diatomic gas.
Total degree of freedom $=3\times n$
As ${{N}_{2}}$ is diatomic, total degree of freedom $=3\times 2=6$
${{H}_{2}}O$ is a triatomic gas.
Total degree of freedom $=3\times n\Rightarrow 3\times 3=9$
As ${{N}_{2}}$ is diatomic gas and ${{H}_{2}}O$ is a triatomic gas, therefore, the value of ${{C}_{p}}$ for ${{N}_{2}}$ is less than the value of ${{C}_{p}}$ for ${{H}_{2}}O$.
Therefore, the correct option is (B), that is, $8.3,11.3$
Additional information:
-The standard enthalpy of formation is defined as the enthalpy change during the formation of $1$ mole of substance. It is calculated in kilojoule per mole ($kJ\,mo{{l}^{-1}}$).
Factors that affect the standard enthalpy of formation is:
i.The partial pressure of gas
ii.Temperature of the system
-The concentration of reactant and product
-Heat capacity is defined as the amount of heat required to raise the temperature of a body by $1{}^\circ C$. It is an extreme property, and it is a path function denoted with$(c)$.
-Heat capacity for gas is molar heat capacity. It is the amount of heat required to raise the temperature of $1$ mole of substance by $1{}^\circ C$ or $1K$ .
-It is of two types:
i.Molar heat capacity at constant volume \[({{C}_{V}})\]
ii.Molar heat capacity at constant pressure $({{C}_{P}})$
There are features of heat capacity and they are as follows:
-Heat capacity can be positive, negative, zero or infinite.
-For solid and liquid, ${{C}_{P}}$ is nearly equal to \[{{C}_{V}}\] .
-Heat capacity of gas is more than the heat capacity of solid and liquid.
Note:
-Degree of freedom is the number of ways in which energy is distributed equally.
-Monoatomic gases contain a single atom. For example, $He,Ar$.
-Diatomic gases contain two atoms. For example, ${{H}_{2}},{{O}_{2}}$ .
-Triatomic gases contain three atoms. For example, ${{H}_{2}}O,C{{O}_{2}}$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE