
An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?
Answer
511.8k+ views
Hint: Find the number of non-black balls present. Thus to get the probability of at least one black ball, find 1 minus the number of non – black balls.
Complete step-by-step answer:
Given the total number of white balls = 3.
Total number of Red balls = 4.
The number of black balls in the urn = 5.
Thus the total number of balls = number of white balls + number of red balls + number of black balls.
= 3 + 4 + 5 = 12
Thus total balls in the urn = 12.
Out of the total 12 balls, the number of balls which are not black in color
= Total balls – number of black balls
= 12 – 5
=7
\[\therefore \] Number of non –black balls = 7.
Now we have to draw out 2 balls without replacement.
P (at least one black ball) = 1 – P (none is black) –(1)
First let us calculate the probability that none of the 2 balls are black i.e. both the balls are of white and red.
The first withdrawal of black balls = number of non – black balls/ total balls = \[\dfrac{7}{12}\].
Now let the second withdrawal of the black ball, if a black ball has already been retired (without placement).
= number of non-black – 1/ total - 1\[=\dfrac{7-1}{12-1}=\dfrac{6}{11}\]
Now let us calculate the probability of at least 1 ball is black.
\[\therefore \] P (at least one black ball) = 1 – P (none is black)
\[\begin{align}
& =1-\left( \dfrac{7}{12}\times \dfrac{6}{11} \right) \\
& =1-\left( \dfrac{7\times 6}{12\times 11} \right)=1-\dfrac{42}{132}=\dfrac{132-42}{132} \\
& =\dfrac{15}{22} \\
\end{align}\]
Thus we got the probability of getting at least one black ball \[=\dfrac{15}{22}\] .
Note: We can also solve this question by simple combination.
P (at least one black ball) = 1 – (no black ball)
\[\begin{align}
& =1-\dfrac{{}^{7}{{C}_{2}}}{{}^{12}{{C}_{2}}} \\
& =1-\dfrac{\dfrac{7!}{\left( 7-2 \right)!2!}}{\dfrac{12!}{\left( 12-2 \right)!2!}}=1-\dfrac{\dfrac{7!}{5!2!}}{\dfrac{12!}{10!2!}} \\
& =1-\dfrac{7\times \dfrac{6}{2}}{12\times \dfrac{11}{2}}=1-\dfrac{7\times 3}{11\times 6} \\
& =1-\dfrac{21}{66} \\
\end{align}\]
\[\therefore \] P (at least one black ball) \[=\dfrac{66-21}{66}=\dfrac{15}{22}\].
Complete step-by-step answer:
Given the total number of white balls = 3.
Total number of Red balls = 4.
The number of black balls in the urn = 5.
Thus the total number of balls = number of white balls + number of red balls + number of black balls.
= 3 + 4 + 5 = 12
Thus total balls in the urn = 12.
Out of the total 12 balls, the number of balls which are not black in color
= Total balls – number of black balls
= 12 – 5
=7
\[\therefore \] Number of non –black balls = 7.
Now we have to draw out 2 balls without replacement.
P (at least one black ball) = 1 – P (none is black) –(1)
First let us calculate the probability that none of the 2 balls are black i.e. both the balls are of white and red.
The first withdrawal of black balls = number of non – black balls/ total balls = \[\dfrac{7}{12}\].
Now let the second withdrawal of the black ball, if a black ball has already been retired (without placement).
= number of non-black – 1/ total - 1\[=\dfrac{7-1}{12-1}=\dfrac{6}{11}\]
Now let us calculate the probability of at least 1 ball is black.
\[\therefore \] P (at least one black ball) = 1 – P (none is black)
\[\begin{align}
& =1-\left( \dfrac{7}{12}\times \dfrac{6}{11} \right) \\
& =1-\left( \dfrac{7\times 6}{12\times 11} \right)=1-\dfrac{42}{132}=\dfrac{132-42}{132} \\
& =\dfrac{15}{22} \\
\end{align}\]
Thus we got the probability of getting at least one black ball \[=\dfrac{15}{22}\] .
Note: We can also solve this question by simple combination.
P (at least one black ball) = 1 – (no black ball)
\[\begin{align}
& =1-\dfrac{{}^{7}{{C}_{2}}}{{}^{12}{{C}_{2}}} \\
& =1-\dfrac{\dfrac{7!}{\left( 7-2 \right)!2!}}{\dfrac{12!}{\left( 12-2 \right)!2!}}=1-\dfrac{\dfrac{7!}{5!2!}}{\dfrac{12!}{10!2!}} \\
& =1-\dfrac{7\times \dfrac{6}{2}}{12\times \dfrac{11}{2}}=1-\dfrac{7\times 3}{11\times 6} \\
& =1-\dfrac{21}{66} \\
\end{align}\]
\[\therefore \] P (at least one black ball) \[=\dfrac{66-21}{66}=\dfrac{15}{22}\].
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
For Frost what do fire and ice stand for Here are some class 10 english CBSE

What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

List three states in India where earthquakes are more class 10 physics CBSE

What did being free mean to Mandela as a boy and as class 10 english CBSE

Where did the fight between the two campaigns of Sambhaji class 10 social science CBSE
