Answer
Verified
468.6k+ views
Hint:
In this question given that urn has 5 Red, 4 black and 3 White marbles. And we draw 3 balls in a single draw so that at most 3 are red. At most 3 red balls either contain zero red ball, one red ball, 2 red ball or 3 red ball. We can either calculate this by calculating a single case every time. Or we can proceed it by other ways like calculation total selected – no of ways to select 4 balls.
Complete step by step solution:
A urn contains 5 red , 4 black and 3 white balls . And in a single draw we get at most 3 red balls.
We have to find the no of ways to select at most 3 red ball
= ( 0 Red ball + other 3 balls ) + ( 1 Red ball + other 3 balls) + ( 2 Red ball + other 2 balls )
+ ( 3 Red ball + 1 other )
= no of ways to select 4 balls – no of select 4 red balls
\[ = {}^{12}{C_4} - {}^5{C_4}\]
\[\begin{array}{l}
= \dfrac{{12 \times 11 \times 10 \times 9}}{{4 \times 3 \times 2 \times 1}} - 5\\
= 495 - 5\\
= 490
\end{array}\]
Hence the required number of ways is 490.
Note:
In this type of question students generally confuse at most and at least , more than and less than so take care of it during attempting these types of questions . Almost means max you get 3 red ball in a draw or minimum you can get zero
In this question given that urn has 5 Red, 4 black and 3 White marbles. And we draw 3 balls in a single draw so that at most 3 are red. At most 3 red balls either contain zero red ball, one red ball, 2 red ball or 3 red ball. We can either calculate this by calculating a single case every time. Or we can proceed it by other ways like calculation total selected – no of ways to select 4 balls.
Complete step by step solution:
A urn contains 5 red , 4 black and 3 white balls . And in a single draw we get at most 3 red balls.
We have to find the no of ways to select at most 3 red ball
= ( 0 Red ball + other 3 balls ) + ( 1 Red ball + other 3 balls) + ( 2 Red ball + other 2 balls )
+ ( 3 Red ball + 1 other )
= no of ways to select 4 balls – no of select 4 red balls
\[ = {}^{12}{C_4} - {}^5{C_4}\]
\[\begin{array}{l}
= \dfrac{{12 \times 11 \times 10 \times 9}}{{4 \times 3 \times 2 \times 1}} - 5\\
= 495 - 5\\
= 490
\end{array}\]
Hence the required number of ways is 490.
Note:
In this type of question students generally confuse at most and at least , more than and less than so take care of it during attempting these types of questions . Almost means max you get 3 red ball in a draw or minimum you can get zero
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE