Angle inscribed in a minor segment is
(A). acute
(B). obtuse
(C). right
(D). straight
Answer
Verified
489.9k+ views
Hint: To solve this question, we will draw a circle and chords in it (other than diameter) and join the intersection points of the chord and the circumference of the circle to the other points of circumference.
Complete step-by-step solution -
To solve this question, we must first know what is a segment of a circle. A chord of a circle divides the circle into two regions, which are called the segments of the circle. The minor segment is the region bounded by the chord and the minor arc intercepted by chord.
In the above figure, \[\theta \] is the angle inscribed in a minor segment. AB is any chord except the diameter of the circle. Here, we have drawn a perpendicular OP on the chord AB. We can clearly see that the \[\theta \] is less than \[{{180}^{\circ }}\] (because \[\theta \] will be \[{{180}^{\circ }}\] only in the case of straight line) and greater than \[{{90}^{\circ }}\]. Now we will move the chord AB perpendicular to OP such that the length of AB increases. Now new points are A' and B’. We will notice that the new angle formed is less than \[\theta \] but still greater than \[{{90}^{\circ }}\]. Now we will check the options one by one.
Option (a): The angle will not be acute because acute angles are less than \[{{90}^{\circ }}\] but in our case the angle is greater than \[{{90}^{\circ }}\].
Option (b): The angle will be obtuse because obtuse angles are greater than \[{{90}^{\circ }}\] and less than \[{{180}^{\circ }}\].
Option (c): The angle will be greater than \[{{90}^{\circ }}\] not exactly \[{{90}^{\circ }}\].
Option (d): The angle can be \[{{180}^{\circ }}\] only when ACB is a straight line.
Hence, option (b) is correct.
Note: The angle will be \[{{90}^{\circ }}\] only in the limiting case when the chord becomes diameter of the circle but in that case, both the segments will be equal and we will not get any minor or major segment.
Complete step-by-step solution -
To solve this question, we must first know what is a segment of a circle. A chord of a circle divides the circle into two regions, which are called the segments of the circle. The minor segment is the region bounded by the chord and the minor arc intercepted by chord.
In the above figure, \[\theta \] is the angle inscribed in a minor segment. AB is any chord except the diameter of the circle. Here, we have drawn a perpendicular OP on the chord AB. We can clearly see that the \[\theta \] is less than \[{{180}^{\circ }}\] (because \[\theta \] will be \[{{180}^{\circ }}\] only in the case of straight line) and greater than \[{{90}^{\circ }}\]. Now we will move the chord AB perpendicular to OP such that the length of AB increases. Now new points are A' and B’. We will notice that the new angle formed is less than \[\theta \] but still greater than \[{{90}^{\circ }}\]. Now we will check the options one by one.
Option (a): The angle will not be acute because acute angles are less than \[{{90}^{\circ }}\] but in our case the angle is greater than \[{{90}^{\circ }}\].
Option (b): The angle will be obtuse because obtuse angles are greater than \[{{90}^{\circ }}\] and less than \[{{180}^{\circ }}\].
Option (c): The angle will be greater than \[{{90}^{\circ }}\] not exactly \[{{90}^{\circ }}\].
Option (d): The angle can be \[{{180}^{\circ }}\] only when ACB is a straight line.
Hence, option (b) is correct.
Note: The angle will be \[{{90}^{\circ }}\] only in the limiting case when the chord becomes diameter of the circle but in that case, both the segments will be equal and we will not get any minor or major segment.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE