Answer
Verified
431.7k+ views
Hint: In this question, we have to remember that the angular acceleration is the ratio of change in angular velocity and time taken by the particle from moving one point to another. We can solve this question by putting $\omega = $constant
Complete step by step solution:
We know that the angular velocity of a particle moving on a circular path of radius \[r\], then the angular velocity $\omega $ is given as-
$\omega = \dfrac{{d\theta }}{{dt}}$ (i)
Where $d\theta $ is the angular displacement of the particle after time ${dt}$.
Now, let the angular acceleration is $\alpha $ of the particle. So, angular acceleration
$\alpha = \dfrac{{d\omega }}{{dt}}$ (ii)
Where $d\omega $ is the change in the velocity and ${dt}$ is the time taken.
Now, according to the question, the angular velocity is constant. So,
$\omega = $constant
Then $d\omega = 0$
Now, from equation (i)
$\alpha = 0$
Hence, the angular acceleration is zero when the angular velocity is constant for a particle.
Additional Information:
We know that in circular motion, a particle is moving in a circular motion, while in linear motion, a particle is moving in a linear path. In circular motion, the particle will have an angular displacement while in linear motion, the particle will have linear displacement. In circular motion, the particle has angular velocity and angular acceleration while in linear motion, the particle has linear velocity and linear acceleration.
Note:
In this question, we have to remember that angular velocity and angular acceleration are related with circular motion. We have to remember that the angular acceleration is the ratio between change in angular velocity and the time. We have given in the question that the angular velocity is constant. So, change in angular velocity will be zero.
Complete step by step solution:
We know that the angular velocity of a particle moving on a circular path of radius \[r\], then the angular velocity $\omega $ is given as-
$\omega = \dfrac{{d\theta }}{{dt}}$ (i)
Where $d\theta $ is the angular displacement of the particle after time ${dt}$.
Now, let the angular acceleration is $\alpha $ of the particle. So, angular acceleration
$\alpha = \dfrac{{d\omega }}{{dt}}$ (ii)
Where $d\omega $ is the change in the velocity and ${dt}$ is the time taken.
Now, according to the question, the angular velocity is constant. So,
$\omega = $constant
Then $d\omega = 0$
Now, from equation (i)
$\alpha = 0$
Hence, the angular acceleration is zero when the angular velocity is constant for a particle.
Additional Information:
We know that in circular motion, a particle is moving in a circular motion, while in linear motion, a particle is moving in a linear path. In circular motion, the particle will have an angular displacement while in linear motion, the particle will have linear displacement. In circular motion, the particle has angular velocity and angular acceleration while in linear motion, the particle has linear velocity and linear acceleration.
Note:
In this question, we have to remember that angular velocity and angular acceleration are related with circular motion. We have to remember that the angular acceleration is the ratio between change in angular velocity and the time. We have given in the question that the angular velocity is constant. So, change in angular velocity will be zero.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths