
How far apart the two electrons are, if the force between them equals the weight of an electron? What in the case of protons?
Answer
515.7k+ views
Hint: Before we approach the solution, it is important to understand the nature of force acting among the electrons and protons. Since they are charged bodies, there is an electrostatic force acting between them, which is given by Coulomb's law. Also, weight is equal to the mass times the acceleration due to gravity.
Complete step by step answer:
The problem has two parts: First part is if the charge is electron and second part is if the charge is a proton.
Part A: Electrons
Consider two electrons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on an electron is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the electron is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 9. 1 \times {10^{ - 31}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 9. 1 \times {10^{ - 31}} \times 10 = 9. 1 \times {10^{ - 30}}N$
Given that the force acting between the electrons is equal to the weight of an electron, we have –
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 9. 1 \times {10^{ - 30}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{9. 1}} \times {10^{ - 38 + 9 + 30}}\]
\[ \Rightarrow {r^2} = 2. 5318 \times 10 = 25. 318\]
\[\therefore r = \sqrt {25. 318} = 5. 031m\]
Thus, the distance of separation is equal to 5.03 m
Part B: Protons
Consider two protons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on a proton is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the proton is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 1. 67 \times {10^{ - 27}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 1. 67 \times {10^{ - 27}} \times 10 = 1. 67 \times {10^{ - 26}}N$
Given that the force acting between the protons is equal to the weight of a proton, we have
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 1. 67 \times {10^{ - 26}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{1. 67}} \times {10^{ - 38 + 9 + 26}}\]
\[ \Rightarrow {r^2} = 13. 796 \times {10^{ - 3}} = 0. 0137\]
\[\therefore r = \sqrt {0. 0137} = 0. 117m\]
Hence, the distance of separation is equal to 0.117m.
Note: The proton and electron have the same charge, known as the fundamental charge $e = 1. 602 \times {10^{ - 19}}C$, but they are opposite in sign. While proton has charge equal to $ + e$, the charge of electrons is $ - e$. However, in this question, only the magnitude of the charge is considered in the calculations and not the sign.
Complete step by step answer:
The problem has two parts: First part is if the charge is electron and second part is if the charge is a proton.
Part A: Electrons
Consider two electrons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on an electron is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the electron is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 9. 1 \times {10^{ - 31}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 9. 1 \times {10^{ - 31}} \times 10 = 9. 1 \times {10^{ - 30}}N$
Given that the force acting between the electrons is equal to the weight of an electron, we have –
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 9. 1 \times {10^{ - 30}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{9. 1}} \times {10^{ - 38 + 9 + 30}}\]
\[ \Rightarrow {r^2} = 2. 5318 \times 10 = 25. 318\]
\[\therefore r = \sqrt {25. 318} = 5. 031m\]
Thus, the distance of separation is equal to 5.03 m
Part B: Protons
Consider two protons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on a proton is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the proton is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 1. 67 \times {10^{ - 27}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 1. 67 \times {10^{ - 27}} \times 10 = 1. 67 \times {10^{ - 26}}N$
Given that the force acting between the protons is equal to the weight of a proton, we have
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 1. 67 \times {10^{ - 26}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{1. 67}} \times {10^{ - 38 + 9 + 26}}\]
\[ \Rightarrow {r^2} = 13. 796 \times {10^{ - 3}} = 0. 0137\]
\[\therefore r = \sqrt {0. 0137} = 0. 117m\]
Hence, the distance of separation is equal to 0.117m.
Note: The proton and electron have the same charge, known as the fundamental charge $e = 1. 602 \times {10^{ - 19}}C$, but they are opposite in sign. While proton has charge equal to $ + e$, the charge of electrons is $ - e$. However, in this question, only the magnitude of the charge is considered in the calculations and not the sign.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

