Answer
Verified
460.8k+ views
Hint: To calculate the odds of occurrence of 7, we first calculate the total sample space and sample space of the given event. Odds of an event referred to the chance of occurrence to the chance of not occurrence of the event. Sample space is nothing but the number of possibilities of an event.
Complete step-by-step solution:
The total number of possibilities of the event are:
Total number of outcomes of two dices = $6 \times 6 = 36$
Each dice can show up six different numbers.
Let E be the event “Sum of the number on the two dice is at least 7”.
Therefore, Sample space of E =
\\[E = \left\{
\left( {1,6} \right)\left( {2,5} \right)\left( {3,4} \right)\left( {4,3} \right)\left( {5,2} \right)\left( {6,1} \right) \\
\left( {3,5} \right)\left( {4,4} \right)\left( {5,3} \right)\left( {6,2} \right) \\
\left( {6,3} \right)\left( {4,5} \right)\left( {5,4} \right)\left( {3,6} \right) \\
\left( {6,4} \right)\left( {5,5} \right)\left( {4,6} \right) \\
\left( {5,6} \right)\left( {6,5} \right) \\
\left( {6,6} \right) \\
\right\}\]
Now, N (E), represents total sample space,
From above N (E) = 21
Also, we can write sample space for (Not E) because we know the total sample space is 36.
N (Not E) = 36 – 21 = 15
$\therefore {\text{P}}\left( {\text{E}} \right) = \dfrac{{21}}{{36}}{\text{ and P}}\left( {{\text{not E}}} \right) = \dfrac{{15}}{{36}}{\text{ - - - }}\left( 1 \right)$
Hence, In favor of event E,
\[ \Rightarrow P\left( E \right):P\left( {{\text{not }}E} \right) \\
\Rightarrow \dfrac{{P\left( E \right)}}{{P\left( {{\text{not }}E} \right)}} \]
Putting the values of P (E) and P (Not E) from equation (1), we get
\[\Rightarrow \dfrac{{\left( {\dfrac{{21}}{{36}}} \right)}}{{\left( {\dfrac{{15}}{{36}}} \right)}} \\
\Rightarrow \dfrac{{21}}{{15}} \\
\Rightarrow \dfrac{7}{5} \]
Note: In order to solve this type of problems the key is to always keep the total sample space of dice in our mind and in order to find the probability of an event, just divide the sample space of that event with the total sample space calculated. The probability of an event is defined as the ratio of favorable outcomes to the total number of outcomes of an event.
Complete step-by-step solution:
The total number of possibilities of the event are:
Total number of outcomes of two dices = $6 \times 6 = 36$
Each dice can show up six different numbers.
Let E be the event “Sum of the number on the two dice is at least 7”.
Therefore, Sample space of E =
\\[E = \left\{
\left( {1,6} \right)\left( {2,5} \right)\left( {3,4} \right)\left( {4,3} \right)\left( {5,2} \right)\left( {6,1} \right) \\
\left( {3,5} \right)\left( {4,4} \right)\left( {5,3} \right)\left( {6,2} \right) \\
\left( {6,3} \right)\left( {4,5} \right)\left( {5,4} \right)\left( {3,6} \right) \\
\left( {6,4} \right)\left( {5,5} \right)\left( {4,6} \right) \\
\left( {5,6} \right)\left( {6,5} \right) \\
\left( {6,6} \right) \\
\right\}\]
Now, N (E), represents total sample space,
From above N (E) = 21
Also, we can write sample space for (Not E) because we know the total sample space is 36.
N (Not E) = 36 – 21 = 15
$\therefore {\text{P}}\left( {\text{E}} \right) = \dfrac{{21}}{{36}}{\text{ and P}}\left( {{\text{not E}}} \right) = \dfrac{{15}}{{36}}{\text{ - - - }}\left( 1 \right)$
Hence, In favor of event E,
\[ \Rightarrow P\left( E \right):P\left( {{\text{not }}E} \right) \\
\Rightarrow \dfrac{{P\left( E \right)}}{{P\left( {{\text{not }}E} \right)}} \]
Putting the values of P (E) and P (Not E) from equation (1), we get
\[\Rightarrow \dfrac{{\left( {\dfrac{{21}}{{36}}} \right)}}{{\left( {\dfrac{{15}}{{36}}} \right)}} \\
\Rightarrow \dfrac{{21}}{{15}} \\
\Rightarrow \dfrac{7}{5} \]
Note: In order to solve this type of problems the key is to always keep the total sample space of dice in our mind and in order to find the probability of an event, just divide the sample space of that event with the total sample space calculated. The probability of an event is defined as the ratio of favorable outcomes to the total number of outcomes of an event.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE