Answer
Verified
500.7k+ views
Hint: Rolle`s Theorem must satisfy all the three conditions and if $f\left( x \right)$ is a polynomial function then the function is continuous in the interval.
First of all, we should know the conditions of Rolle`s theorem
Conditions for Rolle`s theorem is
(1) $f\left( x \right)$ is a continuous at $\left[ {a,b} \right]$
(2) $f\left( x \right)$is derivable at $\left( {a,b} \right)$
(3) $f\left( a \right) = f\left( b \right)$
If all the three conditions satisfied then there exist some \[c\] in $f\left( a \right) = f\left( b \right)$ such that $f'\left( c \right) = 0$
Here we can clearly observe that
(a) $f\left( x \right)$ is a polynomial, so it is continuous in the interval $\left[ {0,2} \right]$
(b) $f'\left( x \right) = 3{x^2} - 6x + 2$ exists for all $x \in \left( {0,2} \right)$
So, $f\left( x \right)$ is differentiable for all $x \in \left( {0,2} \right)$ and
(c) $f\left( 0 \right) = f\left( 2 \right)$ since,
$
f\left( 0 \right) = {\left( 0 \right)^3} - 3{\left( 0 \right)^2} + 2\left( 0 \right) = 0 \\
f\left( 2 \right) = {\left( 2 \right)^3} - 3{\left( 2 \right)^2} + 2\left( 2 \right) \\
{\text{ = }}8 - 3 \times 4 + 4 = 0 \\
$
Thus, all the three conditions of Rolle`s theorem are satisfied.
So, there must be exist $c \in \left[ {0,2} \right]$ such that $f'\left( c \right) = 0$
$f'\left( c \right) = 3{\left( c \right)^2} - 6c + 2 = 0$
solving the equation $3{\left( c \right)^2} - 6c + 2 = 0$ we get
$
\Rightarrow 3{c^2} - 6c + 2 = 0 \\
c = \dfrac{{6 \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( {3 \times 2} \right)} }}{{2\left( 3 \right)}} \\
c = \dfrac{{6 \pm \sqrt {36 - 24} }}{6} \\
c = \dfrac{{6 \pm \sqrt {12} }}{6} \\
c = \dfrac{{6 \pm 2\sqrt 3 }}{6} \\
$
Separating the positive terms, we get
$
c = \dfrac{{6 + 2\sqrt 3 }}{6} \\
c = 1 + \dfrac{{\sqrt 3 }}{3} \\
c = 1 + \dfrac{1}{{\sqrt 3 }} \\
$
Separating the negative terms, we get
$
c = \dfrac{{6 - 2\sqrt 3 }}{6} \\
c = 1 - \dfrac{{\sqrt 3 }}{3} \\
c = 1 - \dfrac{1}{{\sqrt 3 }} \\
$
Thus, $c = 1 \pm \dfrac{1}{{\sqrt 3 }} \in \left[ {0,2} \right]$ and Rolle`s theorem is verified.
Therefore, the value of $c$ is $1 \pm \dfrac{1}{{\sqrt 3 }}$.
So, option B. $1 \pm \dfrac{1}{{\sqrt 3 }}$
Note: All the three conditions must be satisfied to obtain the value of $c$ in Rolle`s theorem. Otherwise the Rolle`s theorem cannot be verified.
First of all, we should know the conditions of Rolle`s theorem
Conditions for Rolle`s theorem is
(1) $f\left( x \right)$ is a continuous at $\left[ {a,b} \right]$
(2) $f\left( x \right)$is derivable at $\left( {a,b} \right)$
(3) $f\left( a \right) = f\left( b \right)$
If all the three conditions satisfied then there exist some \[c\] in $f\left( a \right) = f\left( b \right)$ such that $f'\left( c \right) = 0$
Here we can clearly observe that
(a) $f\left( x \right)$ is a polynomial, so it is continuous in the interval $\left[ {0,2} \right]$
(b) $f'\left( x \right) = 3{x^2} - 6x + 2$ exists for all $x \in \left( {0,2} \right)$
So, $f\left( x \right)$ is differentiable for all $x \in \left( {0,2} \right)$ and
(c) $f\left( 0 \right) = f\left( 2 \right)$ since,
$
f\left( 0 \right) = {\left( 0 \right)^3} - 3{\left( 0 \right)^2} + 2\left( 0 \right) = 0 \\
f\left( 2 \right) = {\left( 2 \right)^3} - 3{\left( 2 \right)^2} + 2\left( 2 \right) \\
{\text{ = }}8 - 3 \times 4 + 4 = 0 \\
$
Thus, all the three conditions of Rolle`s theorem are satisfied.
So, there must be exist $c \in \left[ {0,2} \right]$ such that $f'\left( c \right) = 0$
$f'\left( c \right) = 3{\left( c \right)^2} - 6c + 2 = 0$
solving the equation $3{\left( c \right)^2} - 6c + 2 = 0$ we get
$
\Rightarrow 3{c^2} - 6c + 2 = 0 \\
c = \dfrac{{6 \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( {3 \times 2} \right)} }}{{2\left( 3 \right)}} \\
c = \dfrac{{6 \pm \sqrt {36 - 24} }}{6} \\
c = \dfrac{{6 \pm \sqrt {12} }}{6} \\
c = \dfrac{{6 \pm 2\sqrt 3 }}{6} \\
$
Separating the positive terms, we get
$
c = \dfrac{{6 + 2\sqrt 3 }}{6} \\
c = 1 + \dfrac{{\sqrt 3 }}{3} \\
c = 1 + \dfrac{1}{{\sqrt 3 }} \\
$
Separating the negative terms, we get
$
c = \dfrac{{6 - 2\sqrt 3 }}{6} \\
c = 1 - \dfrac{{\sqrt 3 }}{3} \\
c = 1 - \dfrac{1}{{\sqrt 3 }} \\
$
Thus, $c = 1 \pm \dfrac{1}{{\sqrt 3 }} \in \left[ {0,2} \right]$ and Rolle`s theorem is verified.
Therefore, the value of $c$ is $1 \pm \dfrac{1}{{\sqrt 3 }}$.
So, option B. $1 \pm \dfrac{1}{{\sqrt 3 }}$
Note: All the three conditions must be satisfied to obtain the value of $c$ in Rolle`s theorem. Otherwise the Rolle`s theorem cannot be verified.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE