
What are the values of \[c\] for which Rolle`s Theorem for the function $f\left( x \right) = {x^3} - 3{x^2} + 2x$ in the interval $\left[ {0,2} \right]$is verified?
A. \[c = \pm 1\]
B. \[c = 1 \pm \dfrac{1}{{\sqrt 3 }}\]
C. \[c = \pm 2\]
D. None of these
Answer
623.4k+ views
Hint: Rolle`s Theorem must satisfy all the three conditions and if $f\left( x \right)$ is a polynomial function then the function is continuous in the interval.
First of all, we should know the conditions of Rolle`s theorem
Conditions for Rolle`s theorem is
(1) $f\left( x \right)$ is a continuous at $\left[ {a,b} \right]$
(2) $f\left( x \right)$is derivable at $\left( {a,b} \right)$
(3) $f\left( a \right) = f\left( b \right)$
If all the three conditions satisfied then there exist some \[c\] in $f\left( a \right) = f\left( b \right)$ such that $f'\left( c \right) = 0$
Here we can clearly observe that
(a) $f\left( x \right)$ is a polynomial, so it is continuous in the interval $\left[ {0,2} \right]$
(b) $f'\left( x \right) = 3{x^2} - 6x + 2$ exists for all $x \in \left( {0,2} \right)$
So, $f\left( x \right)$ is differentiable for all $x \in \left( {0,2} \right)$ and
(c) $f\left( 0 \right) = f\left( 2 \right)$ since,
$
f\left( 0 \right) = {\left( 0 \right)^3} - 3{\left( 0 \right)^2} + 2\left( 0 \right) = 0 \\
f\left( 2 \right) = {\left( 2 \right)^3} - 3{\left( 2 \right)^2} + 2\left( 2 \right) \\
{\text{ = }}8 - 3 \times 4 + 4 = 0 \\
$
Thus, all the three conditions of Rolle`s theorem are satisfied.
So, there must be exist $c \in \left[ {0,2} \right]$ such that $f'\left( c \right) = 0$
$f'\left( c \right) = 3{\left( c \right)^2} - 6c + 2 = 0$
solving the equation $3{\left( c \right)^2} - 6c + 2 = 0$ we get
$
\Rightarrow 3{c^2} - 6c + 2 = 0 \\
c = \dfrac{{6 \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( {3 \times 2} \right)} }}{{2\left( 3 \right)}} \\
c = \dfrac{{6 \pm \sqrt {36 - 24} }}{6} \\
c = \dfrac{{6 \pm \sqrt {12} }}{6} \\
c = \dfrac{{6 \pm 2\sqrt 3 }}{6} \\
$
Separating the positive terms, we get
$
c = \dfrac{{6 + 2\sqrt 3 }}{6} \\
c = 1 + \dfrac{{\sqrt 3 }}{3} \\
c = 1 + \dfrac{1}{{\sqrt 3 }} \\
$
Separating the negative terms, we get
$
c = \dfrac{{6 - 2\sqrt 3 }}{6} \\
c = 1 - \dfrac{{\sqrt 3 }}{3} \\
c = 1 - \dfrac{1}{{\sqrt 3 }} \\
$
Thus, $c = 1 \pm \dfrac{1}{{\sqrt 3 }} \in \left[ {0,2} \right]$ and Rolle`s theorem is verified.
Therefore, the value of $c$ is $1 \pm \dfrac{1}{{\sqrt 3 }}$.
So, option B. $1 \pm \dfrac{1}{{\sqrt 3 }}$
Note: All the three conditions must be satisfied to obtain the value of $c$ in Rolle`s theorem. Otherwise the Rolle`s theorem cannot be verified.
First of all, we should know the conditions of Rolle`s theorem
Conditions for Rolle`s theorem is
(1) $f\left( x \right)$ is a continuous at $\left[ {a,b} \right]$
(2) $f\left( x \right)$is derivable at $\left( {a,b} \right)$
(3) $f\left( a \right) = f\left( b \right)$
If all the three conditions satisfied then there exist some \[c\] in $f\left( a \right) = f\left( b \right)$ such that $f'\left( c \right) = 0$
Here we can clearly observe that
(a) $f\left( x \right)$ is a polynomial, so it is continuous in the interval $\left[ {0,2} \right]$
(b) $f'\left( x \right) = 3{x^2} - 6x + 2$ exists for all $x \in \left( {0,2} \right)$
So, $f\left( x \right)$ is differentiable for all $x \in \left( {0,2} \right)$ and
(c) $f\left( 0 \right) = f\left( 2 \right)$ since,
$
f\left( 0 \right) = {\left( 0 \right)^3} - 3{\left( 0 \right)^2} + 2\left( 0 \right) = 0 \\
f\left( 2 \right) = {\left( 2 \right)^3} - 3{\left( 2 \right)^2} + 2\left( 2 \right) \\
{\text{ = }}8 - 3 \times 4 + 4 = 0 \\
$
Thus, all the three conditions of Rolle`s theorem are satisfied.
So, there must be exist $c \in \left[ {0,2} \right]$ such that $f'\left( c \right) = 0$
$f'\left( c \right) = 3{\left( c \right)^2} - 6c + 2 = 0$
solving the equation $3{\left( c \right)^2} - 6c + 2 = 0$ we get
$
\Rightarrow 3{c^2} - 6c + 2 = 0 \\
c = \dfrac{{6 \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( {3 \times 2} \right)} }}{{2\left( 3 \right)}} \\
c = \dfrac{{6 \pm \sqrt {36 - 24} }}{6} \\
c = \dfrac{{6 \pm \sqrt {12} }}{6} \\
c = \dfrac{{6 \pm 2\sqrt 3 }}{6} \\
$
Separating the positive terms, we get
$
c = \dfrac{{6 + 2\sqrt 3 }}{6} \\
c = 1 + \dfrac{{\sqrt 3 }}{3} \\
c = 1 + \dfrac{1}{{\sqrt 3 }} \\
$
Separating the negative terms, we get
$
c = \dfrac{{6 - 2\sqrt 3 }}{6} \\
c = 1 - \dfrac{{\sqrt 3 }}{3} \\
c = 1 - \dfrac{1}{{\sqrt 3 }} \\
$
Thus, $c = 1 \pm \dfrac{1}{{\sqrt 3 }} \in \left[ {0,2} \right]$ and Rolle`s theorem is verified.
Therefore, the value of $c$ is $1 \pm \dfrac{1}{{\sqrt 3 }}$.
So, option B. $1 \pm \dfrac{1}{{\sqrt 3 }}$
Note: All the three conditions must be satisfied to obtain the value of $c$ in Rolle`s theorem. Otherwise the Rolle`s theorem cannot be verified.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

