Answer
Verified
469.8k+ views
Hint:To solve this kind of problem, look at the trigonometric function given in the problem. In this problem it is $\cos \theta $. Verify the characteristics of the trigonometric function whether it is increasing or decreasing function based on the intervals given. The $\cos \theta $ function is decreasing function in the interval $\left( {0,\pi } \right)$.
Complete step-by-step answer:
Given trigonometric function is $4\cos \left( {\dfrac{\theta }{2}} \right)$.
The lower interval is $\dfrac{\pi }{4}$ and the upper interval is $\dfrac{{5\pi }}{4}$.
Now, we need to analyse this problem step by step. The angle value also gets divided by two in the function. Hence, we must not forget to divide the intervals also.
The basic $\cos \theta $ function is multiplied by four in the given problem. But it does not make any difference as if the function is increasing, by multiplying it with a constant value increases the amplitude only. Same in the case if the function is a decreasing function and it is multiplied with any constant value.
As all of us know that $\cos \theta $ is a decreasing function in the interval $\left( {0,\pi } \right)$.
So, we can get one clarity that when the value of $\theta $ increases in the range of $\left( {0,\pi } \right)$, the value of $\cos \theta $ will be decreasing.
But in the function, it is given the angle as $\left( {\dfrac{\theta }{2}} \right)$. So, let us divide the interval boundaries also with two.
So, we get,
The lower boundary is \[\dfrac{\pi }{8}\].
The upper boundary is \[\dfrac{{5\pi }}{8}\].
Now, both values are within the range of the interval $\left( {0,\pi } \right)$.
Hence the function is decreasing in that interval and multiplication of the function with constant does not make any difference, we can say that
As $\theta $ increases from $\dfrac{\pi }{4}$ to $\dfrac{{5\pi }}{4}$, the value of $4\cos \left( {\dfrac{\theta }{2}} \right)$ decreases throughout.
So, the correct answer is “Option C”.
Note:Remember all the basic trigonometric functions characteristics whether they are increasing or decreasing function and the intervals in which they are of that type are most important for solving these types of questions.
Complete step-by-step answer:
Given trigonometric function is $4\cos \left( {\dfrac{\theta }{2}} \right)$.
The lower interval is $\dfrac{\pi }{4}$ and the upper interval is $\dfrac{{5\pi }}{4}$.
Now, we need to analyse this problem step by step. The angle value also gets divided by two in the function. Hence, we must not forget to divide the intervals also.
The basic $\cos \theta $ function is multiplied by four in the given problem. But it does not make any difference as if the function is increasing, by multiplying it with a constant value increases the amplitude only. Same in the case if the function is a decreasing function and it is multiplied with any constant value.
As all of us know that $\cos \theta $ is a decreasing function in the interval $\left( {0,\pi } \right)$.
So, we can get one clarity that when the value of $\theta $ increases in the range of $\left( {0,\pi } \right)$, the value of $\cos \theta $ will be decreasing.
But in the function, it is given the angle as $\left( {\dfrac{\theta }{2}} \right)$. So, let us divide the interval boundaries also with two.
So, we get,
The lower boundary is \[\dfrac{\pi }{8}\].
The upper boundary is \[\dfrac{{5\pi }}{8}\].
Now, both values are within the range of the interval $\left( {0,\pi } \right)$.
Hence the function is decreasing in that interval and multiplication of the function with constant does not make any difference, we can say that
As $\theta $ increases from $\dfrac{\pi }{4}$ to $\dfrac{{5\pi }}{4}$, the value of $4\cos \left( {\dfrac{\theta }{2}} \right)$ decreases throughout.
So, the correct answer is “Option C”.
Note:Remember all the basic trigonometric functions characteristics whether they are increasing or decreasing function and the intervals in which they are of that type are most important for solving these types of questions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers