Answer
Verified
398.4k+ views
Hint:Use conservation of angular momentum to solve this problem. The conservation of angular momentum states that the angular momentum of a system is conserved at any instant of time if any external torque is not applied to the system.
Formula used:
The conservation of angular momentum is given by,
\[L = I\omega = k\]
where \[L\] is the angular momentum of the body \[I\] is the moment of inertia of the body \[\omega \] is the angular velocity of the body and \[k\] is some constant.
Complete step by step answer:
When a diver dives it is said in the question that the rotational kinetic energy of the diver increases during several somersaults. When a diver dives the external torque acting on the diver is zero. Hence, the angular momentum of the diver is conserved.
Now, let’s say at the point of jump the moment of inertia of the diver is \[{I_1}\] and the angular momentum of the diver is \[{\omega _1}\] and when the diver pulls his limbs the moment of inertia of the diver is \[{I_2}\] and the angular momentum of the diver is \[{\omega _2}\]. So, we can write, \[{I_1}{\omega _1} = {I_2}{\omega _2}\].
Now, when the diver pulls his limbs the radius of its rotation decreases and the mass concentrates on the axis of rotation hence the moment of inertia decreases.
\[{I_1} > {I_2}\]
So, from conservation of angular momentum the angular velocity increases.
\[{\omega _1} < {\omega _2}\]
Also, since the angular speed increases rotational kinetic energy also increases. Hence, the angular speed or velocity of the diver increases. Hence, Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, option A is the correct answer.
Note: The rotational kinetic energy of a rotating body is given by, \[\dfrac{1}{2}I{\omega ^2}\]. So, when the moment of inertia decreases and the angular speed increases the increase in angular speed increases the kinetic energy with the square of it. So, net kinetic energy increases when the moment of inertia decreases.
Formula used:
The conservation of angular momentum is given by,
\[L = I\omega = k\]
where \[L\] is the angular momentum of the body \[I\] is the moment of inertia of the body \[\omega \] is the angular velocity of the body and \[k\] is some constant.
Complete step by step answer:
When a diver dives it is said in the question that the rotational kinetic energy of the diver increases during several somersaults. When a diver dives the external torque acting on the diver is zero. Hence, the angular momentum of the diver is conserved.
Now, let’s say at the point of jump the moment of inertia of the diver is \[{I_1}\] and the angular momentum of the diver is \[{\omega _1}\] and when the diver pulls his limbs the moment of inertia of the diver is \[{I_2}\] and the angular momentum of the diver is \[{\omega _2}\]. So, we can write, \[{I_1}{\omega _1} = {I_2}{\omega _2}\].
Now, when the diver pulls his limbs the radius of its rotation decreases and the mass concentrates on the axis of rotation hence the moment of inertia decreases.
\[{I_1} > {I_2}\]
So, from conservation of angular momentum the angular velocity increases.
\[{\omega _1} < {\omega _2}\]
Also, since the angular speed increases rotational kinetic energy also increases. Hence, the angular speed or velocity of the diver increases. Hence, Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, option A is the correct answer.
Note: The rotational kinetic energy of a rotating body is given by, \[\dfrac{1}{2}I{\omega ^2}\]. So, when the moment of inertia decreases and the angular speed increases the increase in angular speed increases the kinetic energy with the square of it. So, net kinetic energy increases when the moment of inertia decreases.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE