Answer
Verified
499.5k+ views
Hint: Extend the given formula for \[n\]number of times to get the \[n\]in the given problem and put \[m=n=x\].
Here we are given that \[\log \left( mn \right)=\log m+\log n\].
We have to prove that \[\log {{x}^{n}}=n\log x\].
Now, we take the equation given.
\[\log \left( mn \right)=\log m+\log n\to \text{equation}\left( i \right)\]
As we can see that, we have to prove the given equation in terms of\[x\].
Therefore, we put \[m=n=x\]in equation\[\left( i \right)\].
We get, \[\log \left( x.x \right)=\log x+\log x\]
\[=\log {{x}^{2}}=2\log x\]
Now we will add \[\log x\]on both sides,
\[=\log {{x}^{2}}+\log x=2\log x+\log x\]
\[=\log {{x}^{2}}.x=3\log x\][From equation\[\left( i \right)\]]
As we know that \[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, \[{{x}^{2}}.{{x}^{2}}={{x}^{2+1}}={{x}^{3}}\]
Hence, we get \[\log {{x}^{3}}=3\log x\]
Similarly, if we add \[\log x\]\[n\]times
We get, \[\log x+\log x+\log x....n\text{ times}=\log \left( x.x.x.x....n\text{ times} \right)\][From
equation\[\left( i \right)\]]
We get, \[n\log x=\log \left( x.x.x....n\text{ times} \right)\]
As, \[{{a}^{{{m}_{1}}}}.{{a}^{{{m}_{2}}}}.....{{a}^{{{m}_{n}}}}={{a}^{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}+.....{{m}_{n}}}
}\]
We get, \[{{x}^{1}}.{{x}^{1}}.{{x}^{1}}.....n\text{ times = }{{\text{x}}^{1+1+1.....n\text{ times}}}={{x}^{n}}\]
Hence, we get \[n\log x=\log {{x}^{n}}\]
Therefore, we proved the desired equation.
Note: Students must note that they have to prove \[\log {{x}^{n}}=n\log x\]starting from \[\log m+\log
n=\log mn\]because the result can also be proved by rules of logarithm. That is, by taking \[{{\log
}_{a}}x=t\]and putting \[x={{a}^{t}}\]and then raising both sides to the power of \[n\]which would be
wrong for a given question.
Here we are given that \[\log \left( mn \right)=\log m+\log n\].
We have to prove that \[\log {{x}^{n}}=n\log x\].
Now, we take the equation given.
\[\log \left( mn \right)=\log m+\log n\to \text{equation}\left( i \right)\]
As we can see that, we have to prove the given equation in terms of\[x\].
Therefore, we put \[m=n=x\]in equation\[\left( i \right)\].
We get, \[\log \left( x.x \right)=\log x+\log x\]
\[=\log {{x}^{2}}=2\log x\]
Now we will add \[\log x\]on both sides,
\[=\log {{x}^{2}}+\log x=2\log x+\log x\]
\[=\log {{x}^{2}}.x=3\log x\][From equation\[\left( i \right)\]]
As we know that \[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, \[{{x}^{2}}.{{x}^{2}}={{x}^{2+1}}={{x}^{3}}\]
Hence, we get \[\log {{x}^{3}}=3\log x\]
Similarly, if we add \[\log x\]\[n\]times
We get, \[\log x+\log x+\log x....n\text{ times}=\log \left( x.x.x.x....n\text{ times} \right)\][From
equation\[\left( i \right)\]]
We get, \[n\log x=\log \left( x.x.x....n\text{ times} \right)\]
As, \[{{a}^{{{m}_{1}}}}.{{a}^{{{m}_{2}}}}.....{{a}^{{{m}_{n}}}}={{a}^{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}+.....{{m}_{n}}}
}\]
We get, \[{{x}^{1}}.{{x}^{1}}.{{x}^{1}}.....n\text{ times = }{{\text{x}}^{1+1+1.....n\text{ times}}}={{x}^{n}}\]
Hence, we get \[n\log x=\log {{x}^{n}}\]
Therefore, we proved the desired equation.
Note: Students must note that they have to prove \[\log {{x}^{n}}=n\log x\]starting from \[\log m+\log
n=\log mn\]because the result can also be proved by rules of logarithm. That is, by taking \[{{\log
}_{a}}x=t\]and putting \[x={{a}^{t}}\]and then raising both sides to the power of \[n\]which would be
wrong for a given question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers