Answer
Verified
394.8k+ views
Hint: Use the relation between temperature and volume due to compression adiabatically to find the temperature after compression.
Use the formula of work done by the gas due to adiabatic compression in terms of temperature and calculate the amount of work done by the gas. Here, the value of the universal gas constant is needed.
Formula used: For the volumes \[{V_1}\] and ${V_2}$ at initial and final temperature ${T_1}$ and ${T_2}$ due to adiabatic compression $\dfrac{{{T_2}}}{{{T_1}}} = {\left( {\dfrac{{{V_1}}}{{{V_2}}}} \right)^{\gamma - 1}}$
The work done by the gas, $W = \dfrac{{R\left( {{T_1} - {T_2}} \right)}}{{\gamma - 1}}$
$R$ is the universal gas constant.
Complete step-by-step solution:
For a gas compressing under an adiabatic process, the relation between temperature and volume is \[T{V^{\gamma - 1}} = k\] , where \[k\] is some constant.
Using this relation,
For the volumes \[{V_1}\] and ${V_2}$ at initial and final temperature ${T_1}$ and ${T_2}$ due to adiabatic compression $\dfrac{{{T_2}}}{{{T_1}}} = {\left( {\dfrac{{{V_1}}}{{{V_2}}}} \right)^{\gamma - 1}}................(1)$
Given that, ${T_1} = 273K$ [since in N.T.P]
${V_2} = \dfrac{{{V_1}}}{2}$
$\gamma = 1.41$
So, from eq (1) ${T_2} = {T_1}{\left( {\dfrac{{{V_1}}}{{\dfrac{{{V_1}}}{2}}}} \right)^{\gamma - 1}}$
$ \Rightarrow {T_2} = 273 \times {2^{(1.41 - 1)}}$
$ \Rightarrow {T_2} = 363K............(2)$
Now, The work done by the gas due to the adiabatic process,
$W = \dfrac{{R\left( {{T_1} - {T_2}} \right)}}{{\gamma - 1}}.............(3)$
$R$ is the universal gas constant, $R = 8.31$
Putting the calculated and given values in the eq (3), we get
\[W = \dfrac{{8.31\left( {273 - 362.73} \right)}}{{1.41 - 1}}\]
\[ \Rightarrow W = - \dfrac{{8.31 \times 89.73}}{{0.41}}\]
\[ \Rightarrow W = - \dfrac{{745.6563}}{{0.41}}\]
\[ \Rightarrow W = - 1818.67\]
So, the work done \[ \Rightarrow W = - 1818.67J\]
Option (c) is the correct answer.
Note: An adiabatic process during which no heat is gained or lost by the system. The first law of thermodynamics with Q=0 shows that every one of the modifications in internal energy is within the type of work done. This puts a constraint on the warmth engine method resulting in the adiabatic condition. This condition is often accustomed to derive the expression for the work done throughout an adiabatic process.
Use the formula of work done by the gas due to adiabatic compression in terms of temperature and calculate the amount of work done by the gas. Here, the value of the universal gas constant is needed.
Formula used: For the volumes \[{V_1}\] and ${V_2}$ at initial and final temperature ${T_1}$ and ${T_2}$ due to adiabatic compression $\dfrac{{{T_2}}}{{{T_1}}} = {\left( {\dfrac{{{V_1}}}{{{V_2}}}} \right)^{\gamma - 1}}$
The work done by the gas, $W = \dfrac{{R\left( {{T_1} - {T_2}} \right)}}{{\gamma - 1}}$
$R$ is the universal gas constant.
Complete step-by-step solution:
For a gas compressing under an adiabatic process, the relation between temperature and volume is \[T{V^{\gamma - 1}} = k\] , where \[k\] is some constant.
Using this relation,
For the volumes \[{V_1}\] and ${V_2}$ at initial and final temperature ${T_1}$ and ${T_2}$ due to adiabatic compression $\dfrac{{{T_2}}}{{{T_1}}} = {\left( {\dfrac{{{V_1}}}{{{V_2}}}} \right)^{\gamma - 1}}................(1)$
Given that, ${T_1} = 273K$ [since in N.T.P]
${V_2} = \dfrac{{{V_1}}}{2}$
$\gamma = 1.41$
So, from eq (1) ${T_2} = {T_1}{\left( {\dfrac{{{V_1}}}{{\dfrac{{{V_1}}}{2}}}} \right)^{\gamma - 1}}$
$ \Rightarrow {T_2} = 273 \times {2^{(1.41 - 1)}}$
$ \Rightarrow {T_2} = 363K............(2)$
Now, The work done by the gas due to the adiabatic process,
$W = \dfrac{{R\left( {{T_1} - {T_2}} \right)}}{{\gamma - 1}}.............(3)$
$R$ is the universal gas constant, $R = 8.31$
Putting the calculated and given values in the eq (3), we get
\[W = \dfrac{{8.31\left( {273 - 362.73} \right)}}{{1.41 - 1}}\]
\[ \Rightarrow W = - \dfrac{{8.31 \times 89.73}}{{0.41}}\]
\[ \Rightarrow W = - \dfrac{{745.6563}}{{0.41}}\]
\[ \Rightarrow W = - 1818.67\]
So, the work done \[ \Rightarrow W = - 1818.67J\]
Option (c) is the correct answer.
Note: An adiabatic process during which no heat is gained or lost by the system. The first law of thermodynamics with Q=0 shows that every one of the modifications in internal energy is within the type of work done. This puts a constraint on the warmth engine method resulting in the adiabatic condition. This condition is often accustomed to derive the expression for the work done throughout an adiabatic process.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE