Answer
Verified
492k+ views
Hint: We have to only use the compound interest formula i.e. \[A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}\], where A is the amount after T years, P is the principal amount, R is the rate of interest and T is the time period.
Complete step-by-step solution -
As we know that the amount after two years will be equal to Rs. 2205.
The principal amount at the starting is equal to Rs. 2000.
And the time period is 2 years.
So, R be the rate of interest on which the principal amount is compounded annually.
So, now we can apply the formula of compound interest i.e. \[A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}\] and then find the value of R by manipulating that equation.
So, putting values of A, P and T in the compound interest formula. We get,
\[2205 = 2000{\left( {1 + \dfrac{R}{{100}}} \right)^2}\]
Now dividing both sides of the above equation by 2000. We get,
\[\dfrac{{2205}}{{2000}} = {\left( {1 + \dfrac{R}{{100}}} \right)^2}\]
\[\dfrac{{441}}{{400}} = {\left( {1 + \dfrac{R}{{100}}} \right)^2}\]
Now taking the square root on both sides of the above equation. We get,
\[\sqrt {\dfrac{{441}}{{400}}} = \dfrac{{21}}{{20}} = \left( {1 + \dfrac{R}{{100}}} \right)\]
Now subtracting 1 to both sides of the above equation. We get,
\[\dfrac{{21}}{{20}} - 1 = \dfrac{1}{{20}} = \dfrac{R}{{100}}\]
On multiplying both sides of the above equation by 100. We get,
R = 5%
Hence, the rate of interest will be equal to 5%.
Note: Whenever we come up with this type of problem the we had to only use compound interest formula i.e. \[A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}\] And after that dividing both sides of the equation by p and then taking square root to both the sides and after that subtracting 1 from both sides and multiplying by hundred. We will get the required value of R (i.e. rate of interest at which principal amount is compounded annually).
Complete step-by-step solution -
As we know that the amount after two years will be equal to Rs. 2205.
The principal amount at the starting is equal to Rs. 2000.
And the time period is 2 years.
So, R be the rate of interest on which the principal amount is compounded annually.
So, now we can apply the formula of compound interest i.e. \[A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}\] and then find the value of R by manipulating that equation.
So, putting values of A, P and T in the compound interest formula. We get,
\[2205 = 2000{\left( {1 + \dfrac{R}{{100}}} \right)^2}\]
Now dividing both sides of the above equation by 2000. We get,
\[\dfrac{{2205}}{{2000}} = {\left( {1 + \dfrac{R}{{100}}} \right)^2}\]
\[\dfrac{{441}}{{400}} = {\left( {1 + \dfrac{R}{{100}}} \right)^2}\]
Now taking the square root on both sides of the above equation. We get,
\[\sqrt {\dfrac{{441}}{{400}}} = \dfrac{{21}}{{20}} = \left( {1 + \dfrac{R}{{100}}} \right)\]
Now subtracting 1 to both sides of the above equation. We get,
\[\dfrac{{21}}{{20}} - 1 = \dfrac{1}{{20}} = \dfrac{R}{{100}}\]
On multiplying both sides of the above equation by 100. We get,
R = 5%
Hence, the rate of interest will be equal to 5%.
Note: Whenever we come up with this type of problem the we had to only use compound interest formula i.e. \[A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}\] And after that dividing both sides of the equation by p and then taking square root to both the sides and after that subtracting 1 from both sides and multiplying by hundred. We will get the required value of R (i.e. rate of interest at which principal amount is compounded annually).
Recently Updated Pages
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
the Gond raja of Garha Katanga assumed the title of class 10 social science CBSE