Answer
Verified
429.9k+ views
Hint: Here we will use the basic of the differential equation for the law of uninhibited growth. Then we will integrate the equation to get it free from differential function. Then we will use the given initial conditions to find the value of the constant. Then by using this equation we will get the value of the number of bacteria that will be present after 5 hours.
Complete step by step solution:
Given that the culture of bacteria obeys the law of uninhibited growth.
We know that the law of uninhibited growth is according to the differential equation. Therefore, we get
\[\dfrac{{dN}}{{dt}} = kN\]
Now we will integrate the equation to remove the differential from the equation. Therefore after integration we get
\[ \Rightarrow \ln \left( {\dfrac{{{N_2}}}{{{N_1}}}} \right) = k\left( {{t_2} - {t_1}} \right)\]……………….. \[\left( 1 \right)\]
Now we will use the initial given condition to get the value of the constant \[k\]. Therefore the initial conditions are
At \[{t_1} = 0\] the number of bacteria is \[{N_1} = 500\]
At \[{t_2} = 1\] the number of bacteria is \[{N_2} = 800\]
So by putting these values in the equation \[\left( 1 \right)\], we get
\[ \Rightarrow \ln \left( {\dfrac{{800}}{{500}}} \right) = k\left( {1 - 0} \right)\]
\[ \Rightarrow k = \ln \left( {\dfrac{8}{5}} \right)\]
Therefore putting the value of \[k\] in the equation \[\left( 1 \right)\], we get
\[ \Rightarrow \ln \left( {\dfrac{{{N_2}}}{{{N_1}}}} \right) = \ln \left( {\dfrac{8}{5}} \right)\left( {{t_2} - {t_1}} \right)\]
Now we have to find the number of bacteria will be present after 5 hours. Therefore using the initial conditions are
At \[{t_1} = 0\] the number of bacteria is \[{N_1} = 500\]
At \[{t_3} = 5\] the number of bacteria is \[{N_3}\]
So putting these values in the above equation to get the value of \[{N_3}\]. Therefore, we get
\[ \Rightarrow \ln \left( {\dfrac{{{N_3}}}{{500}}} \right) = \ln \left( {\dfrac{8}{5}} \right)\left( {5 - 0} \right)\]
\[ \Rightarrow \ln \left( {\dfrac{{{N_3}}}{{500}}} \right) = 5\ln \left( {\dfrac{8}{5}} \right) = 2.35\]
Now we will apply the exponential to both side of the equation, we get
\[ \Rightarrow {e^{\ln \left( {\dfrac{{{N_3}}}{{500}}} \right)}} = {e^{2.35}}\]
The exponential and the logarithmic function will cancel out. Therefore, we get
\[ \Rightarrow \dfrac{{{N_3}}}{{500}} = 10.485\]
\[ \Rightarrow {N_3} = 10.485 \times 500 \simeq 5243\]
Hence the number of bacteria will be present after 5 hours if a culture of bacteria obeys the law of uninhibited growth are 5243.
Note:
Here we should know the basic differential equation for Newton's law of growth which is the equation for the rate of growth of the substance. Whenever the term rate is attached to anything it varies with the time which means it varies i.e. increases or decreases with respect to the time. When the rate of growth is decreasing then there is a negative sign in the equation and there is a positive sign when the rate of growth is increasing. We should very carefully apply the initial conditions to the equation of the rate of growth to get the value of the constant of the equation.
Complete step by step solution:
Given that the culture of bacteria obeys the law of uninhibited growth.
We know that the law of uninhibited growth is according to the differential equation. Therefore, we get
\[\dfrac{{dN}}{{dt}} = kN\]
Now we will integrate the equation to remove the differential from the equation. Therefore after integration we get
\[ \Rightarrow \ln \left( {\dfrac{{{N_2}}}{{{N_1}}}} \right) = k\left( {{t_2} - {t_1}} \right)\]……………….. \[\left( 1 \right)\]
Now we will use the initial given condition to get the value of the constant \[k\]. Therefore the initial conditions are
At \[{t_1} = 0\] the number of bacteria is \[{N_1} = 500\]
At \[{t_2} = 1\] the number of bacteria is \[{N_2} = 800\]
So by putting these values in the equation \[\left( 1 \right)\], we get
\[ \Rightarrow \ln \left( {\dfrac{{800}}{{500}}} \right) = k\left( {1 - 0} \right)\]
\[ \Rightarrow k = \ln \left( {\dfrac{8}{5}} \right)\]
Therefore putting the value of \[k\] in the equation \[\left( 1 \right)\], we get
\[ \Rightarrow \ln \left( {\dfrac{{{N_2}}}{{{N_1}}}} \right) = \ln \left( {\dfrac{8}{5}} \right)\left( {{t_2} - {t_1}} \right)\]
Now we have to find the number of bacteria will be present after 5 hours. Therefore using the initial conditions are
At \[{t_1} = 0\] the number of bacteria is \[{N_1} = 500\]
At \[{t_3} = 5\] the number of bacteria is \[{N_3}\]
So putting these values in the above equation to get the value of \[{N_3}\]. Therefore, we get
\[ \Rightarrow \ln \left( {\dfrac{{{N_3}}}{{500}}} \right) = \ln \left( {\dfrac{8}{5}} \right)\left( {5 - 0} \right)\]
\[ \Rightarrow \ln \left( {\dfrac{{{N_3}}}{{500}}} \right) = 5\ln \left( {\dfrac{8}{5}} \right) = 2.35\]
Now we will apply the exponential to both side of the equation, we get
\[ \Rightarrow {e^{\ln \left( {\dfrac{{{N_3}}}{{500}}} \right)}} = {e^{2.35}}\]
The exponential and the logarithmic function will cancel out. Therefore, we get
\[ \Rightarrow \dfrac{{{N_3}}}{{500}} = 10.485\]
\[ \Rightarrow {N_3} = 10.485 \times 500 \simeq 5243\]
Hence the number of bacteria will be present after 5 hours if a culture of bacteria obeys the law of uninhibited growth are 5243.
Note:
Here we should know the basic differential equation for Newton's law of growth which is the equation for the rate of growth of the substance. Whenever the term rate is attached to anything it varies with the time which means it varies i.e. increases or decreases with respect to the time. When the rate of growth is decreasing then there is a negative sign in the equation and there is a positive sign when the rate of growth is increasing. We should very carefully apply the initial conditions to the equation of the rate of growth to get the value of the constant of the equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE