Answer
Verified
428.4k+ views
Hint:While balancing a chemical equation we have to keep in mind that the number of atoms on each side should be equal. We can multiply the stoichiometric coefficient of each reactant and product and make each type of atom same. Here, atoms are hydrogen oxygen magnesium phosphorus. We have found that equation in which each atom is balanced at last.
Complete step-by-step answer:We have the reaction taking place in between magnesium hydroxide and phosphoric acid. Magnesium is an element of the group $2$ so if it reacts with water it makes hydroxide of formula \[Mg{(OH)_2}\] while phosphoric acid has an oxidation number of phosphorus as $ + 5$ . They reacts and forms magnesium phosphate and release water in the solution.
\[{H_3}P{O_4}\, + \,Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - \,(1)\]
Count the number of atoms left hand side and right hand side. We have atoms on left hand side as $(\,1P,\,5H,\,6O\,and\,1Mg)$ here just symbols are used to define the numbers of atoms, now lets’ count on right hand side and we have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now here we have four species, let’s try to balance them first by multiplying the left hand side. This is because the left hand side has fewer atoms. Let’s start by multiplying phosphoric acid by number $2$ and magnesium hydroxide by number $3$ we get the equation as
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - (2)\] .
To confirm the change in number of atoms let’s again count the atoms left hand side have $(2P,\,12H,\,14O\,and\,3Mg)$ and right hand side have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now as the number on the right hand side decreases we have to multiply the right hand side. We can multiply the water molecule by number $6$ . The equation becomes as-
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - - - - - - - - - (3)\]
If you count the number of atoms on both sides it becomes equal. Both sides we have two phosphorus, hydrogens are twelve, oxygen are fourteen in number and at last we have three magnesium.
Thus the balanced chemical equation is \[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - (Final\,answer)\]
Note:This is a neutralization reaction of an acid with base, after combination they form salt and water. The reaction is exothermic in nature; it means that energy is released in a larger amount. The balancing of chemical equations is very important because by this process we get to know the moles of reactant used and products formed.
Complete step-by-step answer:We have the reaction taking place in between magnesium hydroxide and phosphoric acid. Magnesium is an element of the group $2$ so if it reacts with water it makes hydroxide of formula \[Mg{(OH)_2}\] while phosphoric acid has an oxidation number of phosphorus as $ + 5$ . They reacts and forms magnesium phosphate and release water in the solution.
\[{H_3}P{O_4}\, + \,Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - \,(1)\]
Count the number of atoms left hand side and right hand side. We have atoms on left hand side as $(\,1P,\,5H,\,6O\,and\,1Mg)$ here just symbols are used to define the numbers of atoms, now lets’ count on right hand side and we have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now here we have four species, let’s try to balance them first by multiplying the left hand side. This is because the left hand side has fewer atoms. Let’s start by multiplying phosphoric acid by number $2$ and magnesium hydroxide by number $3$ we get the equation as
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - (2)\] .
To confirm the change in number of atoms let’s again count the atoms left hand side have $(2P,\,12H,\,14O\,and\,3Mg)$ and right hand side have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now as the number on the right hand side decreases we have to multiply the right hand side. We can multiply the water molecule by number $6$ . The equation becomes as-
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - - - - - - - - - (3)\]
If you count the number of atoms on both sides it becomes equal. Both sides we have two phosphorus, hydrogens are twelve, oxygen are fourteen in number and at last we have three magnesium.
Thus the balanced chemical equation is \[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - (Final\,answer)\]
Note:This is a neutralization reaction of an acid with base, after combination they form salt and water. The reaction is exothermic in nature; it means that energy is released in a larger amount. The balancing of chemical equations is very important because by this process we get to know the moles of reactant used and products formed.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers