Answer
Verified
465.6k+ views
Hint: Banking of roads is done at curves i.e. when roads come across circular paths. Now two forces act on a body when it undergoes a circular motion, namely centripetal and centrifugal forces. The centrifugal force acts outward from the center while centripetal force is directed inwards ensuring that the body stays in the curved path.
Complete step by step answer:
When vehicles go through a turn they travel about a nearly circular arc. Thus there must be some force that produced the required acceleration. If the vehicle goes in a horizontal circular path, this resultant force is also horizontal.
Consider a situation as shown below, a vehicle of mass M is moving at a speed v making a turn on the circular path of radius r. So the external forces acting on the vehicle are
Weight of the vehicle, Mg
Normal force, N
Friction, ${f_s}$
If the road is horizontal, the normal force N is vertically upwards. The only horizontal force that can act towards the center is the friction ${f_s}$. This is static friction and self adjustable. The tyres of the vehicle get a tendency to skip outwards and the frictional force which opposes this skipping acts towards the center. Thus for a safe turn we must have:
$\eqalign{
& \dfrac{{{v^2}}}{r} = \dfrac{{{f_s}}}{M} \cr
& {\text{or }}{f_s} = \dfrac{{M{v^2}}}{r} \cr} $
However, there is a limit to the magnitude of the frictional force. Thus friction is not always reliable if high speed and sharp turns are involved. So to avoid dependence on the friction, the roads are banked at a turn so that the outer part of the road is somewhat lifted up in comparison to the inner part. In return this changes the angle for the normal reaction force N, creating a component of this force along the radius of the road and towards the center. This additional force provides the sufficient centripetal force to overcome skidding of the vehicle.
Therefore, the correct option is B. i.e., increase centripetal force.
Note: If ${\mu _s}$ is the coefficient of static friction between the tyres and the road, the magnitude of friction ${f_s}$ cannot exceed ${\mu _s}N$. For vertical equilibrium N=Mg, so ${f_s} \leqslant {\mu _s}Mg$.
Complete step by step answer:
When vehicles go through a turn they travel about a nearly circular arc. Thus there must be some force that produced the required acceleration. If the vehicle goes in a horizontal circular path, this resultant force is also horizontal.
Consider a situation as shown below, a vehicle of mass M is moving at a speed v making a turn on the circular path of radius r. So the external forces acting on the vehicle are
Weight of the vehicle, Mg
Normal force, N
Friction, ${f_s}$
If the road is horizontal, the normal force N is vertically upwards. The only horizontal force that can act towards the center is the friction ${f_s}$. This is static friction and self adjustable. The tyres of the vehicle get a tendency to skip outwards and the frictional force which opposes this skipping acts towards the center. Thus for a safe turn we must have:
$\eqalign{
& \dfrac{{{v^2}}}{r} = \dfrac{{{f_s}}}{M} \cr
& {\text{or }}{f_s} = \dfrac{{M{v^2}}}{r} \cr} $
However, there is a limit to the magnitude of the frictional force. Thus friction is not always reliable if high speed and sharp turns are involved. So to avoid dependence on the friction, the roads are banked at a turn so that the outer part of the road is somewhat lifted up in comparison to the inner part. In return this changes the angle for the normal reaction force N, creating a component of this force along the radius of the road and towards the center. This additional force provides the sufficient centripetal force to overcome skidding of the vehicle.
Therefore, the correct option is B. i.e., increase centripetal force.
Note: If ${\mu _s}$ is the coefficient of static friction between the tyres and the road, the magnitude of friction ${f_s}$ cannot exceed ${\mu _s}N$. For vertical equilibrium N=Mg, so ${f_s} \leqslant {\mu _s}Mg$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE