Answer
Verified
108.3k+ views
HINT: Brine solution refers to the high concentration of salt (NaCl) in water (H2O). Electrolysis is the process in which ionic substances are broken into simpler substances when an electric current is passed through it.
Complete step by step solution:
Brine solutions have the composition of sodium chloride (NaCl) and water (H2O). Other useful chemicals which we will get in this process, sodium hydroxide (NaOH) and hydrogen (H2). The chlorine and sodium hydroxide produced in the process have to be separated in the reaction when they come in contact with each other.
As we know electrolysis is done on the two electrodes which are cathode electrode and the anode electrode.
-Electrolysis on the negative cathode electrode
The negative cathode attracts the Na+ (from sodium chloride) and H+ ions (from water). The only ions discharged at the cathode are Hydrogen ions. More is the reactivity of the metal is, the less readily there is the presence of reduced ions on the electrode surface. Hydrogen ions get reduced by gaining electrons and give hydrogen molecules at the negative electrode which attracts positive ions towards itself.
$2H+\left( aq \right)+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)$
Other equations:
$2{{H}_{2}}O+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)+20{{H}^{-}}\left( aq \right)$
-Electrolysis on the positive anode electrode
The positively charged anode attracts the negative hydroxide OH ions (from water) and chloride Cl ions (from sodium chloride) towards itself. The chloride ion only is discharged in significant quantities during the process which means that it is preferentially oxidized to chlorine.
The chloride ions are oxidized by electron loss to offer chlorine molecules at the positive electrode which attracts negative ions.
\[C{{l}_{2}}\to 2C{{l}^{}}+2{{e}^{-}}\]
The hydroxide ion, with the uncharged sodium ion, from
\[N{{a}^{+}}+OH\to NaOH\]
Thereby, the answer to the above multiple questions is:
\[NaOH,\ C{{l}_{2}},\ {{H}_{2}}\]
As all three options (A), (C) and (D) are answers to this question and given out in the process of brine electrolysis.
Note:-Electrolysis is where ionic compounds are separated to form simple compounds.
-Electrolysis works only if the compound contains ions. Covalent compounds cannot behave as electrolytes because they contain natural atoms in it, these atoms are joined together by covalent bonds rather than ionic bonds.
Complete step by step solution:
Brine solutions have the composition of sodium chloride (NaCl) and water (H2O). Other useful chemicals which we will get in this process, sodium hydroxide (NaOH) and hydrogen (H2). The chlorine and sodium hydroxide produced in the process have to be separated in the reaction when they come in contact with each other.
As we know electrolysis is done on the two electrodes which are cathode electrode and the anode electrode.
-Electrolysis on the negative cathode electrode
The negative cathode attracts the Na+ (from sodium chloride) and H+ ions (from water). The only ions discharged at the cathode are Hydrogen ions. More is the reactivity of the metal is, the less readily there is the presence of reduced ions on the electrode surface. Hydrogen ions get reduced by gaining electrons and give hydrogen molecules at the negative electrode which attracts positive ions towards itself.
$2H+\left( aq \right)+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)$
Other equations:
$2{{H}_{2}}O+2{{\text{e}}^{-}}\to {{H}_{2}}\left( g \right)+20{{H}^{-}}\left( aq \right)$
-Electrolysis on the positive anode electrode
The positively charged anode attracts the negative hydroxide OH ions (from water) and chloride Cl ions (from sodium chloride) towards itself. The chloride ion only is discharged in significant quantities during the process which means that it is preferentially oxidized to chlorine.
The chloride ions are oxidized by electron loss to offer chlorine molecules at the positive electrode which attracts negative ions.
\[C{{l}_{2}}\to 2C{{l}^{}}+2{{e}^{-}}\]
The hydroxide ion, with the uncharged sodium ion, from
\[N{{a}^{+}}+OH\to NaOH\]
Thereby, the answer to the above multiple questions is:
\[NaOH,\ C{{l}_{2}},\ {{H}_{2}}\]
As all three options (A), (C) and (D) are answers to this question and given out in the process of brine electrolysis.
Note:-Electrolysis is where ionic compounds are separated to form simple compounds.
-Electrolysis works only if the compound contains ions. Covalent compounds cannot behave as electrolytes because they contain natural atoms in it, these atoms are joined together by covalent bonds rather than ionic bonds.
Recently Updated Pages
If x is real then the maximum and minimum values of class 10 maths JEE_Main
If one of the roots of equation x2+ax+30 is 3 and one class 10 maths JEE_Main
The HCF of two numbers is 96 and their LCM is 1296 class 10 maths JEE_Main
The height of a cone is 21 cm Find the area of the class 10 maths JEE_Main
In a family each daughter has the same number of brothers class 10 maths JEE_Main
If the vertices of a triangle are ab cc b0 and b0c class 10 maths JEE_Main
Other Pages
Lattice energy of an ionic compound depends upon A class 11 chemistry JEE_Main
The graph of current versus time in a wire is given class 12 physics JEE_Main
As a result of isobaric heating Delta T 72K one mole class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A 5m long pole of 3kg mass is placed against a smooth class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main