Answer
Verified
498k+ views
Hint: Here, we will use the formulae of cost price and selling price with gain and loss percentages to solve the given problem.
Given,
Selling Price of 45 is Rs.40 and he loses 20%. Now, let us find the cost price of these 45 lemons by using the formulae of cost price with loss percentage i.e..,
$C.P = \dfrac{{S.P\times 100}}{{(100 - loss\% )}} \to (1)$
Now, let us substitute the value of S.P and loss% in equation (1), we get
$C.P = \dfrac{{45\times 100}}{{(100 - 20)}} = \dfrac{{45\times 100}}{{80}} = 50$
Therefore, the Cost price of 45 lemons is Rs.50. Now, let us find the Selling price of 45 lemons with
20% gain by using the formulae of selling price with gain percentage i.e..,
$S.P = \dfrac{{C.P\times (100 + gain\% )}}{{100}} \to (2)$
Now, let us substitute the value of C.P and gain% in equation (2), we get
$S.P = \dfrac{{50\times (100 + 20)}}{{100}} = \dfrac{{50\times 120}}{{100}} = 60$
Since, the selling price of 45 lemons with 20% gain is Rs.60, then the selling price of 1 lemon will be $\dfrac{{60}}{{45}} = \dfrac{4}{3}$. Let ‘x’ be the number of lemons then the number of lemons he sell at Rs.24 will be
$
\Rightarrow \dfrac{4}{3}\times x = 24 \\
\Rightarrow x = 24\times \dfrac{3}{4} \\
\Rightarrow x = 18 \\
$
Hence, the number of lemons he can sell at Rs.24 with 20% gain is 18.
Note: Make sure that percentage of gain should be added to ‘100’ whereas the percentage of loss is subtracted from ‘100’.
Given,
Selling Price of 45 is Rs.40 and he loses 20%. Now, let us find the cost price of these 45 lemons by using the formulae of cost price with loss percentage i.e..,
$C.P = \dfrac{{S.P\times 100}}{{(100 - loss\% )}} \to (1)$
Now, let us substitute the value of S.P and loss% in equation (1), we get
$C.P = \dfrac{{45\times 100}}{{(100 - 20)}} = \dfrac{{45\times 100}}{{80}} = 50$
Therefore, the Cost price of 45 lemons is Rs.50. Now, let us find the Selling price of 45 lemons with
20% gain by using the formulae of selling price with gain percentage i.e..,
$S.P = \dfrac{{C.P\times (100 + gain\% )}}{{100}} \to (2)$
Now, let us substitute the value of C.P and gain% in equation (2), we get
$S.P = \dfrac{{50\times (100 + 20)}}{{100}} = \dfrac{{50\times 120}}{{100}} = 60$
Since, the selling price of 45 lemons with 20% gain is Rs.60, then the selling price of 1 lemon will be $\dfrac{{60}}{{45}} = \dfrac{4}{3}$. Let ‘x’ be the number of lemons then the number of lemons he sell at Rs.24 will be
$
\Rightarrow \dfrac{4}{3}\times x = 24 \\
\Rightarrow x = 24\times \dfrac{3}{4} \\
\Rightarrow x = 18 \\
$
Hence, the number of lemons he can sell at Rs.24 with 20% gain is 18.
Note: Make sure that percentage of gain should be added to ‘100’ whereas the percentage of loss is subtracted from ‘100’.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE