Answer
Verified
430.8k+ views
Hint: Gauss’s theorem is used to calculate the electric field of any closed surface area. We shall first mark a Gaussian surface and then find the closed integral of the electric field inside the gaussian equating it with the charge enclosed in the Gaussian surface divided by permittivity of free space.
Complete answer:
Since we have to find the electric field inside the hollow spherical conductor, thus the Gaussian surface would be a concentric hollow sphere whose radius, $r$ is less than the radius of the spherical conductor.
That is, if $R$is the radius of the given spherical conductor, then $rThe elemental area, $dA=4\pi {{r}^{2}}.dr$.
The Gauss theorem is mathematically expressed as:
$\oint{\vec{E}.d\vec{A}=\dfrac{{{q}_{enclosed}}}{{{\varepsilon }_{0}}}}$
Where,
$\vec{E}=$ electric field of Gaussian surface.
${{q}_{enclosed}}=$ charge enclosed inside the gaussian surface
${{\varepsilon }_{0}}=$ permittivity of free space or vacuum
We know that if we provide charge to a conductor, that charge resides only on the outer walls of the conductor and thus, there is zero charge inside the conductor.
Now, we have been given a hollow spherical conductor. In this case as well, the charge will reside on the outer wall of the conductor and there is zero charge anywhere inside the conductor.
$\Rightarrow {{q}_{enclosed}}=0$
Thus, applying Gauss theorem, we have
$\oint{\vec{E}.d\vec{A}=\dfrac{0}{{{\varepsilon }_{0}}}}$
$\Rightarrow \vec{E}=0$
Therefore, we get that the electric field in a hollow spherical conductor is zero using Gauss theorem.
Note:
The choice of the Gaussian surface plays a fundamental role in the determination of electric field using Gauss law. The Gaussian surface is an imaginary surface visualized to set boundaries for the application of Gauss law at or around a predefined area.
Complete answer:
Since we have to find the electric field inside the hollow spherical conductor, thus the Gaussian surface would be a concentric hollow sphere whose radius, $r$ is less than the radius of the spherical conductor.
That is, if $R$is the radius of the given spherical conductor, then $r
The Gauss theorem is mathematically expressed as:
$\oint{\vec{E}.d\vec{A}=\dfrac{{{q}_{enclosed}}}{{{\varepsilon }_{0}}}}$
Where,
$\vec{E}=$ electric field of Gaussian surface.
${{q}_{enclosed}}=$ charge enclosed inside the gaussian surface
${{\varepsilon }_{0}}=$ permittivity of free space or vacuum
We know that if we provide charge to a conductor, that charge resides only on the outer walls of the conductor and thus, there is zero charge inside the conductor.
Now, we have been given a hollow spherical conductor. In this case as well, the charge will reside on the outer wall of the conductor and there is zero charge anywhere inside the conductor.
$\Rightarrow {{q}_{enclosed}}=0$
Thus, applying Gauss theorem, we have
$\oint{\vec{E}.d\vec{A}=\dfrac{0}{{{\varepsilon }_{0}}}}$
$\Rightarrow \vec{E}=0$
Therefore, we get that the electric field in a hollow spherical conductor is zero using Gauss theorem.
Note:
The choice of the Gaussian surface plays a fundamental role in the determination of electric field using Gauss law. The Gaussian surface is an imaginary surface visualized to set boundaries for the application of Gauss law at or around a predefined area.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE