Answer
Verified
449.7k+ views
Hint: Water is dissociated to a very small extent into hydrogen and hydroxyl ions, as represented by the equation,
$\text{ }{{\text{H}}_{\text{2}}}\text{O (}l)\text{ }\rightleftharpoons \text{ }{{\text{H}}^{\text{+}}}\text{(}aq)\text{ + O}{{\text{H}}^{-}}(aq)\text{ }$
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
Complete step by step answer:
We are provided with the following data:
Volume of solution is 1 litre
Temperature of the solution changes from $\text{ }{{\text{T}}_{\text{1}}}\text{ = 298 K }$ to$\text{ }{{\text{T}}_{2}}\text{ = 300 K }$.
Dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{(298 K) = 1}{{\text{0}}^{-14}}\text{ }$ and $\text{ }{{\text{K}}_{\text{w}}}\text{(300 K) = 2}\text{.56}\times \text{1}{{\text{0}}^{-14}}\text{ }$
We have to calculate the change in the hydrogen ion $\text{ }{{\text{H}}^{\text{+}}}\text{ }$ concentration in the given volume of solution.
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
a) At $\text{ 300 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 298 K }$is equal to $\text{1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(298\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{{{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }{{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 298 K }$is equal to $\text{ 1}{{\text{0}}^{-7\text{ }}}$ .
b) At $\text{ 310 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 310 K }$is equal to $\text{ 2}\text{.56 }\times \text{ 1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(310\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{2.56\times {{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = 1}\text{.6}\times {{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 310 K }$is equal to $\text{ 1}\text{.6}\times {{10}^{-7}}\text{ }$ .
So, change in the hydrogen ion concentration at the $\text{ 310 K }$and $\text{ 298 K }$would be,
$\text{ }{{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}-{{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\left( \text{1}\text{.6}\times {{10}^{-7}} \right)-\left( 1.0\times {{10}^{-7}} \right)\text{ = 0}\text{.6}\times {{10}^{-7}}\text{ }$
Therefore change in concentration of hydrogen ion is equal to $\text{ 0}\text{.6}\times {{10}^{-7}}\text{ }$.
Note: Note that, pure water means a water which is free from any kind of impurities. For pure water that ionic product or the dissociation constant of water is equal to $\text{ 1}{{\text{0}}^{-14}}\text{ }$. However, with increase in temperature more number of water molecules undergo the dissociation into its corresponding hydroxyl and hydrogen ion thus the dissociation constant increases. We can say dissociation of water is directly related to the temperature.
$\text{ }{{\text{H}}_{\text{2}}}\text{O (}l)\text{ }\rightleftharpoons \text{ }{{\text{H}}^{\text{+}}}\text{(}aq)\text{ + O}{{\text{H}}^{-}}(aq)\text{ }$
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
Complete step by step answer:
We are provided with the following data:
Volume of solution is 1 litre
Temperature of the solution changes from $\text{ }{{\text{T}}_{\text{1}}}\text{ = 298 K }$ to$\text{ }{{\text{T}}_{2}}\text{ = 300 K }$.
Dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{(298 K) = 1}{{\text{0}}^{-14}}\text{ }$ and $\text{ }{{\text{K}}_{\text{w}}}\text{(300 K) = 2}\text{.56}\times \text{1}{{\text{0}}^{-14}}\text{ }$
We have to calculate the change in the hydrogen ion $\text{ }{{\text{H}}^{\text{+}}}\text{ }$ concentration in the given volume of solution.
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
a) At $\text{ 300 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 298 K }$is equal to $\text{1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(298\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{{{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }{{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 298 K }$is equal to $\text{ 1}{{\text{0}}^{-7\text{ }}}$ .
b) At $\text{ 310 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 310 K }$is equal to $\text{ 2}\text{.56 }\times \text{ 1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(310\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{2.56\times {{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = 1}\text{.6}\times {{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 310 K }$is equal to $\text{ 1}\text{.6}\times {{10}^{-7}}\text{ }$ .
So, change in the hydrogen ion concentration at the $\text{ 310 K }$and $\text{ 298 K }$would be,
$\text{ }{{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}-{{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\left( \text{1}\text{.6}\times {{10}^{-7}} \right)-\left( 1.0\times {{10}^{-7}} \right)\text{ = 0}\text{.6}\times {{10}^{-7}}\text{ }$
Therefore change in concentration of hydrogen ion is equal to $\text{ 0}\text{.6}\times {{10}^{-7}}\text{ }$.
Note: Note that, pure water means a water which is free from any kind of impurities. For pure water that ionic product or the dissociation constant of water is equal to $\text{ 1}{{\text{0}}^{-14}}\text{ }$. However, with increase in temperature more number of water molecules undergo the dissociation into its corresponding hydroxyl and hydrogen ion thus the dissociation constant increases. We can say dissociation of water is directly related to the temperature.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE