Answer
Verified
450.9k+ views
Hint: To answer this question, you must recall the formula of equilibrium constant of a reaction in terms of the concentration of reactants, that is ${{\text{K}}_{\text{c}}}$. It is given by the concentration at equilibrium of products divided by the concentration at equilibrium of reactants raised to the power of their respective stoichiometric coefficients.
Formula used:
${{\text{K}}_{\text{c}}} = \dfrac{{\left[ {{{\text{H}}_{\text{2}}}} \right]\left[ {{{\text{I}}_{\text{2}}}} \right]}}{{{{\left[ {{\text{HI}}} \right]}^{\text{2}}}}}$
Where ${{\text{K}}_{\text{c}}}$is equilibrium constant of the reaction
$\left[ {{\text{HI}}} \right]$is the concentration of ${\text{HI}}$ at equilibrium
$\left[ {{{\text{H}}_2}} \right]$is the concentration of ${{\text{H}}_2}$ at equilibrium
$\left[ {{{\text{I}}_2}} \right]$ is the concentration of ${{\text{I}}_2}$ at equilibrium
Complete step by step answer:
For the given reaction, $2HI(g) \rightleftharpoons {H_2}(g) + {I_2}(g)$.
We are given the equilibrium concentrations of the reactants as well as the products.
We have, $\left[ {{\text{HI}}} \right] = 0.5{\text{M}}$, $\left[ {{{\text{H}}_{\text{2}}}} \right] = 0.08{\text{M}}$ and $\left[ {{{\text{I}}_{\text{2}}}} \right] = 0.062{\text{M}}$at equilibrium.
To find ${{\text{K}}_{\text{c}}}$, we use the formula ${{\text{K}}_{\text{c}}} = \dfrac{{\left[ {{{\text{H}}_{\text{2}}}} \right]\left[ {{{\text{I}}_{\text{2}}}} \right]}}{{{{\left[ {{\text{HI}}} \right]}^{\text{2}}}}}$.
Substituting the values of concentrations into the equation, we get,
\[{{\text{K}}_{\text{c}}} = \dfrac{{\left( {0.08} \right) \times \left( {0.062} \right)}}{{{{\left( {0.5} \right)}^2}}}\]
\[ \Rightarrow {{\text{K}}_{\text{c}}} = \dfrac{{0.00496}}{{0.25}}\]
Solving this, we get:
$\therefore {{\text{K}}_{\text{c}}} = 0.0198$
Therefore, the equilibrium constant of the reaction in terms of the concentrations of the constituents is ${{\text{K}}_{\text{c}}} = 0.0198$.
Now we have to find the equilibrium constant of the reaction in terms of the partial pressures of the gaseous constituents, that is ${{\text{K}}_{\text{P}}}$.
We know the relation between ${{\text{K}}_{\text{c}}}$ and ${{\text{K}}_{\text{P}}}$ is
${{\text{K}}_{\text{P}}} = {{\text{K}}_{\text{c}}} \times {\left( {{\text{RT}}} \right)^{\Delta {n_g}}}$
Where, ${\text{R}}$is the gas constant
${\text{T}}$is the temperature
We are given the temperature $ = 500{\text{K}}$
$\Delta {{\text{n}}_{\text{g}}}$is the change in number of moles of gaseous constituents,
Which is the difference between the number of moles of gases in the product and the number of moles of gases in the reactant.
Thus, $\Delta {{\text{n}}_{\text{g}}} = 2 - 2 = 0$
Substituting the values in the relation, we get
${{\text{K}}_{\text{P}}} = {{\text{K}}_{\text{c}}} \times {\left( {500{\text{R}}} \right)^0}$
Simplifying:
$ \Rightarrow {{\text{K}}_{\text{P}}} = {{\text{K}}_{\text{c}}}$
$\therefore {{\text{K}}_{\text{P}}} = 0.0198$
Note:
The numerical value of an equilibrium constant is obtained by allowing a reaction to proceed to equilibrium and then measuring the concentrations of each substance involved in that reaction. Since the concentrations are measured at equilibrium, the equilibrium constant remains the same for a given reaction independent of initial concentrations of the reactants and products. This knowledge allows us to derive a model expression that can serve as a standard for any reaction. This basic standard form of an equilibrium constant is given as
${K_{eq}} = \dfrac{{{{\left( {{a_C}} \right)}^c}}}{{{{\left( {{a_A}} \right)}^a}{{\left( {{a_B}} \right)}^b}}}$ for a reaction: $aA + bB \rightleftharpoons cC$
If $K > 1$ then equilibrium favours the formation of products, reaction proceeds in the forward direction.
If $K < 1$ then equilibrium favours the formation of reactants, reaction proceeds in the backward direction.
Formula used:
${{\text{K}}_{\text{c}}} = \dfrac{{\left[ {{{\text{H}}_{\text{2}}}} \right]\left[ {{{\text{I}}_{\text{2}}}} \right]}}{{{{\left[ {{\text{HI}}} \right]}^{\text{2}}}}}$
Where ${{\text{K}}_{\text{c}}}$is equilibrium constant of the reaction
$\left[ {{\text{HI}}} \right]$is the concentration of ${\text{HI}}$ at equilibrium
$\left[ {{{\text{H}}_2}} \right]$is the concentration of ${{\text{H}}_2}$ at equilibrium
$\left[ {{{\text{I}}_2}} \right]$ is the concentration of ${{\text{I}}_2}$ at equilibrium
Complete step by step answer:
For the given reaction, $2HI(g) \rightleftharpoons {H_2}(g) + {I_2}(g)$.
We are given the equilibrium concentrations of the reactants as well as the products.
We have, $\left[ {{\text{HI}}} \right] = 0.5{\text{M}}$, $\left[ {{{\text{H}}_{\text{2}}}} \right] = 0.08{\text{M}}$ and $\left[ {{{\text{I}}_{\text{2}}}} \right] = 0.062{\text{M}}$at equilibrium.
To find ${{\text{K}}_{\text{c}}}$, we use the formula ${{\text{K}}_{\text{c}}} = \dfrac{{\left[ {{{\text{H}}_{\text{2}}}} \right]\left[ {{{\text{I}}_{\text{2}}}} \right]}}{{{{\left[ {{\text{HI}}} \right]}^{\text{2}}}}}$.
Substituting the values of concentrations into the equation, we get,
\[{{\text{K}}_{\text{c}}} = \dfrac{{\left( {0.08} \right) \times \left( {0.062} \right)}}{{{{\left( {0.5} \right)}^2}}}\]
\[ \Rightarrow {{\text{K}}_{\text{c}}} = \dfrac{{0.00496}}{{0.25}}\]
Solving this, we get:
$\therefore {{\text{K}}_{\text{c}}} = 0.0198$
Therefore, the equilibrium constant of the reaction in terms of the concentrations of the constituents is ${{\text{K}}_{\text{c}}} = 0.0198$.
Now we have to find the equilibrium constant of the reaction in terms of the partial pressures of the gaseous constituents, that is ${{\text{K}}_{\text{P}}}$.
We know the relation between ${{\text{K}}_{\text{c}}}$ and ${{\text{K}}_{\text{P}}}$ is
${{\text{K}}_{\text{P}}} = {{\text{K}}_{\text{c}}} \times {\left( {{\text{RT}}} \right)^{\Delta {n_g}}}$
Where, ${\text{R}}$is the gas constant
${\text{T}}$is the temperature
We are given the temperature $ = 500{\text{K}}$
$\Delta {{\text{n}}_{\text{g}}}$is the change in number of moles of gaseous constituents,
Which is the difference between the number of moles of gases in the product and the number of moles of gases in the reactant.
Thus, $\Delta {{\text{n}}_{\text{g}}} = 2 - 2 = 0$
Substituting the values in the relation, we get
${{\text{K}}_{\text{P}}} = {{\text{K}}_{\text{c}}} \times {\left( {500{\text{R}}} \right)^0}$
Simplifying:
$ \Rightarrow {{\text{K}}_{\text{P}}} = {{\text{K}}_{\text{c}}}$
$\therefore {{\text{K}}_{\text{P}}} = 0.0198$
Note:
The numerical value of an equilibrium constant is obtained by allowing a reaction to proceed to equilibrium and then measuring the concentrations of each substance involved in that reaction. Since the concentrations are measured at equilibrium, the equilibrium constant remains the same for a given reaction independent of initial concentrations of the reactants and products. This knowledge allows us to derive a model expression that can serve as a standard for any reaction. This basic standard form of an equilibrium constant is given as
${K_{eq}} = \dfrac{{{{\left( {{a_C}} \right)}^c}}}{{{{\left( {{a_A}} \right)}^a}{{\left( {{a_B}} \right)}^b}}}$ for a reaction: $aA + bB \rightleftharpoons cC$
If $K > 1$ then equilibrium favours the formation of products, reaction proceeds in the forward direction.
If $K < 1$ then equilibrium favours the formation of reactants, reaction proceeds in the backward direction.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE