Answer
Verified
429.6k+ views
Hint: In this question, we have a trigonometric inverse function. The trigonometric inverse function is also called the arc function. To solve the trigonometric inverse function we assume the angle \[\theta \] which is equal to that trigonometric inverse function. Then we find the value of \[\theta \].
Complete step by step solution:
In this question, we used the word trigonometric inverse function. The trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec, and cot. The trigonometric inverse function is also called cyclomatic function, anti trigonometric function, and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right-angle triangles.
Let us discuss all six trigonometric functions.
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as \[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as \[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given below.
\[\left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\]
Let us assume that the angle \[\theta \] (angle of the right-angle triangle) is equal to that trigonometric function.
Then,
\[ \Rightarrow \theta = \left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\]
Then,
\[ \Rightarrow \tan \theta = \dfrac{1}{2}\]
We find the value of angle\[\theta \].
Then,
\[ \Rightarrow \theta = \left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\]
After calculating the above, the result is as below.
\[\therefore \theta = 26.57^\circ \]
Therefore, the value of \[\left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\] is \[26.57^\circ \].
Note:
If you have a trigonometric inverse function with value. Then first assume that the angle \[\theta \]. Then find the value of that angle \[\theta \]. The angle \[\theta \] is the angle of the right-angle triangle. And trigonometric functions are always used for right-angle triangles.
Complete step by step solution:
In this question, we used the word trigonometric inverse function. The trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec, and cot. The trigonometric inverse function is also called cyclomatic function, anti trigonometric function, and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right-angle triangles.
Let us discuss all six trigonometric functions.
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as \[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as \[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given below.
\[\left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\]
Let us assume that the angle \[\theta \] (angle of the right-angle triangle) is equal to that trigonometric function.
Then,
\[ \Rightarrow \theta = \left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\]
Then,
\[ \Rightarrow \tan \theta = \dfrac{1}{2}\]
We find the value of angle\[\theta \].
Then,
\[ \Rightarrow \theta = \left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\]
After calculating the above, the result is as below.
\[\therefore \theta = 26.57^\circ \]
Therefore, the value of \[\left[ {{{\tan }^{ - 1}}\left( {\left( {\dfrac{1}{2}} \right)} \right)} \right]\] is \[26.57^\circ \].
Note:
If you have a trigonometric inverse function with value. Then first assume that the angle \[\theta \]. Then find the value of that angle \[\theta \]. The angle \[\theta \] is the angle of the right-angle triangle. And trigonometric functions are always used for right-angle triangles.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE