
Calculate standard enthalpy of formation for benzene from the following data.
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2(l)}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
\[\begin{align}
& {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(C}{{\text{O}}_{2}}\text{)= -393}\text{.5 KJ/mole} \\
& {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(}{{\text{C}}_{2}}\text{O)= -285}\text{.8KJ/mole} \\
\end{align}\]
Answer
551.4k+ views
Hint: We calculate the calculate the enthalpy of the benzene by the formula as $\Delta {{\text{H}}^{\circ }}=\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products) -}\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(reactants)}$, here \[\Delta {{\text{H}}^{\circ }}~\]is the total enthalpy of the reaction and whose value is given as \[3267\text{ }KJ\text{ }mol{{e}^{-1}}\] and ${{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$=\[-393.5\text{ }KJ\text{ }mol{{e}^{-1}}\] , ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$= \[-258.8\text{ }KJ\text{ }mol{{e}^{-1}}\] and ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$=\[KJ\text{ }mol{{e}^{-1}}\] . Now calculate its enthalpy.
Complete step by step answer:
First of all, what is the enthalpy of formation? From the enthalpy of formation, we simplify the total change in the enthalpy of the reaction when 1mole of the compound is formed from its constituents’ elements.
- We can easily calculate the enthalpy of benzene in the following reaction as:
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
$\Delta {{\text{H}}^{\circ }}=\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products) -}\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(reactants)}$---------(A)
$\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products)}$= $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$ + $3\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$---(1)
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$=\[-393.5\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$= \[-258.8\text{ }KJ\text{ }mol{{e}^{-1}}\]
Put these values in equation(1), we get:
\[\begin{array}{*{35}{l}}
\Delta {{\text{H}}^{\circ }}~=6\text{ }\left( -393.5 \right)\text{ }+\text{ }3\left( -258.8 \right)\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=~-2361\text{ }+-\text{ }857.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=\text{ }-3218.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
\end{array}\]
- Now, we will calculate the enthalpy for the reactants
\[\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}(\text{reactants)}\] = $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ + $\dfrac{15}{2}\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$= \[x\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$= \[0KJ\text{ }mol{{e}^{-1}}\]
- Put all the values in equation(A), we get:
\[\Delta {{\text{H}}^{\circ }}~\]=$1012.5\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ KJ/ mole
- As we know that ,\[\Delta {{\text{H}}^{\circ }}~\]= \[-3267\text{ }KJ\text{ }mol{{e}^{-1}}\], then;
$-3267\text{ }=\text{ }-3218.4\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{ }KJ\text{ }mol{{e}^{-1}}$
\[-3267\text{ }=\text{ }-3218.4\text{ }+\text{ }x\text{ }KJ\text{ }mol{{e}^{-1}}\]
\[x=\text{ }-\text{ }3267\text{ }+\text{ }3218.4\text{ =}-48.6~KJ\text{ }mol{{e}^{-1}}\]
- Thus, the standard enthalpy of formation for benzene from the reaction;
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
is: \[-48.6~KJ\text{ }mol{{e}^{-1}}\].
Note: The enthalpy of formation of oxygen is taken as zero in the above reaction because when the elements are present in their molecular form like oxygen gas, or in any solid form etc. their standard enthalpy of formation is always taken as zero as they undergo no change in their formation.
Complete step by step answer:
First of all, what is the enthalpy of formation? From the enthalpy of formation, we simplify the total change in the enthalpy of the reaction when 1mole of the compound is formed from its constituents’ elements.
- We can easily calculate the enthalpy of benzene in the following reaction as:
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
$\Delta {{\text{H}}^{\circ }}=\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products) -}\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(reactants)}$---------(A)
$\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products)}$= $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$ + $3\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$---(1)
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$=\[-393.5\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$= \[-258.8\text{ }KJ\text{ }mol{{e}^{-1}}\]
Put these values in equation(1), we get:
\[\begin{array}{*{35}{l}}
\Delta {{\text{H}}^{\circ }}~=6\text{ }\left( -393.5 \right)\text{ }+\text{ }3\left( -258.8 \right)\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=~-2361\text{ }+-\text{ }857.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=\text{ }-3218.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
\end{array}\]
- Now, we will calculate the enthalpy for the reactants
\[\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}(\text{reactants)}\] = $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ + $\dfrac{15}{2}\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$= \[x\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$= \[0KJ\text{ }mol{{e}^{-1}}\]
- Put all the values in equation(A), we get:
\[\Delta {{\text{H}}^{\circ }}~\]=$1012.5\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ KJ/ mole
- As we know that ,\[\Delta {{\text{H}}^{\circ }}~\]= \[-3267\text{ }KJ\text{ }mol{{e}^{-1}}\], then;
$-3267\text{ }=\text{ }-3218.4\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{ }KJ\text{ }mol{{e}^{-1}}$
\[-3267\text{ }=\text{ }-3218.4\text{ }+\text{ }x\text{ }KJ\text{ }mol{{e}^{-1}}\]
\[x=\text{ }-\text{ }3267\text{ }+\text{ }3218.4\text{ =}-48.6~KJ\text{ }mol{{e}^{-1}}\]
- Thus, the standard enthalpy of formation for benzene from the reaction;
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
is: \[-48.6~KJ\text{ }mol{{e}^{-1}}\].
Note: The enthalpy of formation of oxygen is taken as zero in the above reaction because when the elements are present in their molecular form like oxygen gas, or in any solid form etc. their standard enthalpy of formation is always taken as zero as they undergo no change in their formation.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

