Answer
Verified
468.6k+ views
Hint: To find the 10th term of the given infinite series we need to first identify the series and then use the formula for its nth term to find the 10th term.
An arithmetic progression is given as: $a,a + d,a + 2d,a + 3d,..........a + (n - 1)d.$ with ‘a’ as the first term and ‘d’ as the common difference. The nth term of this series will be given as:
${a_n} = a + \left( {n - 1} \right)d$.
Complete step-by-step solution:
Now the series given to us is. so the difference between the consecutive terms is given as:
$6 - 4 = 2;8 - 6 = 2...........$
That is the difference between the next term and the previous term is the same for all the consecutive terms and the first term is 4.
Therefore, we can conclude that the given series is an Arithmetic Series with the first term ‘a’=4 and the common difference ‘d’=2.
Now for an Arithmetic Progression the formula to find its nth term is given as:
${a_n} = \left[ {a + \left( {n - 1} \right)d} \right]$
Where ${a_n}$is the nth term, a is the first term n is the number of terms and d is the common difference.
Now for the given series, to find the 10th term we have to take n = 10 and we already have a = 4, d= 2
So putting the values of a, d and n in the formula for nth term we will get ${a_{_{10}}}$as:
$
{a_{10}} = \left[ {4 + \left( {10 - 1} \right)2} \right] \\
= \left[ {4 + 9 \times 2} \right] \\
= \left[ {4 + 18} \right] \\
= 22 \\
$
That is, the 10th term of the given infinite series will be 22.
The given infinite series is an Arithmetic Series and since we had to find the 10th term so we used the formula of the nth term of an Arithmetic Series to get the 10th term and the 10th term is 22.
Hence, the correct answer is option C.
Note: Identifying the series correctly is essential, since if the series is not identified correctly then the whole calculation that follows will be incorrect. The sum of n terms of an Arithmetic Progression is given as: ${S_n} = \dfrac{n}{2}\left( {a + l} \right)$ where a is the first term and l is the last term, the alternative formula for sum of n terms for the same series is given as: ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ . We can use either depending on the question.
An arithmetic progression is given as: $a,a + d,a + 2d,a + 3d,..........a + (n - 1)d.$ with ‘a’ as the first term and ‘d’ as the common difference. The nth term of this series will be given as:
${a_n} = a + \left( {n - 1} \right)d$.
Complete step-by-step solution:
Now the series given to us is. so the difference between the consecutive terms is given as:
$6 - 4 = 2;8 - 6 = 2...........$
That is the difference between the next term and the previous term is the same for all the consecutive terms and the first term is 4.
Therefore, we can conclude that the given series is an Arithmetic Series with the first term ‘a’=4 and the common difference ‘d’=2.
Now for an Arithmetic Progression the formula to find its nth term is given as:
${a_n} = \left[ {a + \left( {n - 1} \right)d} \right]$
Where ${a_n}$is the nth term, a is the first term n is the number of terms and d is the common difference.
Now for the given series, to find the 10th term we have to take n = 10 and we already have a = 4, d= 2
So putting the values of a, d and n in the formula for nth term we will get ${a_{_{10}}}$as:
$
{a_{10}} = \left[ {4 + \left( {10 - 1} \right)2} \right] \\
= \left[ {4 + 9 \times 2} \right] \\
= \left[ {4 + 18} \right] \\
= 22 \\
$
That is, the 10th term of the given infinite series will be 22.
The given infinite series is an Arithmetic Series and since we had to find the 10th term so we used the formula of the nth term of an Arithmetic Series to get the 10th term and the 10th term is 22.
Hence, the correct answer is option C.
Note: Identifying the series correctly is essential, since if the series is not identified correctly then the whole calculation that follows will be incorrect. The sum of n terms of an Arithmetic Progression is given as: ${S_n} = \dfrac{n}{2}\left( {a + l} \right)$ where a is the first term and l is the last term, the alternative formula for sum of n terms for the same series is given as: ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ . We can use either depending on the question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE