Answer
Verified
445.8k+ views
Hint: In a clock there are three hand hour hand, minute hand, and second hand each hand is different time period. minute hand takes one hour to complete one rotation, second hand takes one minute to complete one rotation and hour hand takes $12$ hour to complete one rotation, in this question minute hand is given minute hand takes one hour to complete one rotation.
Complete step by step answer:
Step I:
Angular velocity is defined as the speed of rotation of an object. It shows how an object changes its position with respect to time.
Expression of angular velocity, \[\omega = \dfrac{\theta }{t}\] …… (1)
Step II:
The linear velocity shows the rate of change of displacement with time if the object is moving in a straight line.
Expression of linear velocity, \[v = \omega \times r\] ……. (2)
Where,
r is the radius of tip of minute hand
t is the time in seconds
\[\theta \] is the angular distance travelled by minute hand in radians
Step III:
Given values:
Length of a minute hand is $10cm = 0.1m$
To find the value of \[\theta \]
Minute hand takes a one hour to complete one rotation
1 rotation is equal to \[{360^ \circ }\]
Convert degree into radian, multiply \[{360^ \circ }\]\[ \times \]\[\dfrac{\pi }{{{{180}^ \circ }}}\]
\[\theta \] = \[{360^ \circ }\] = \[2\pi \]( radians )
Also evaluate the value of time in seconds
Minute hand takes a one hour to complete one rotation
One minute = $60\sec$
Time in seconds = One hour $ = 60\min$=$60 \times 60 = 3600\sec$
Step IV:
To find the angular velocity of a tip of minute hand
Using eq. (1)
\[\omega = \dfrac{\theta }{t}\]
\[\Rightarrow \omega = \dfrac{{2 \times 3.14}}{{3600}}\]
$\Rightarrow \omega = 1.745 \times {10^{ - 3}}rad/\sec $
Step V:
To find the linear velocity at the tip of minute hand
Using eq. (2)
V = \[r \times \omega \]
Length of minute hand = radius of the minute hand = 0.10m
\[\Rightarrow v = 0.1 \times 0.1745 \times {10^{ - 3}}m/s\]
\[\Rightarrow v = 1.745 \times {10^{ - 4}}m/s\]
$\therefore $ The angular velocity of the minute hand is $1.745 \times {10^{ - 3}}rad/\sec $
The linear velocity of the minute hand is $1.745 \times {10^{ - 4}}m/s$
Note:
It is to be noted that the term angular velocity and linear velocity are different terms. Since angular motion is always moving in a circular motion, a force is always required to keep it in circular motion. But a linear velocity does not require any external force to keep the object moving along a straight path.
Complete step by step answer:
Step I:
Angular velocity is defined as the speed of rotation of an object. It shows how an object changes its position with respect to time.
Expression of angular velocity, \[\omega = \dfrac{\theta }{t}\] …… (1)
Step II:
The linear velocity shows the rate of change of displacement with time if the object is moving in a straight line.
Expression of linear velocity, \[v = \omega \times r\] ……. (2)
Where,
r is the radius of tip of minute hand
t is the time in seconds
\[\theta \] is the angular distance travelled by minute hand in radians
Step III:
Given values:
Length of a minute hand is $10cm = 0.1m$
To find the value of \[\theta \]
Minute hand takes a one hour to complete one rotation
1 rotation is equal to \[{360^ \circ }\]
Convert degree into radian, multiply \[{360^ \circ }\]\[ \times \]\[\dfrac{\pi }{{{{180}^ \circ }}}\]
\[\theta \] = \[{360^ \circ }\] = \[2\pi \]( radians )
Also evaluate the value of time in seconds
Minute hand takes a one hour to complete one rotation
One minute = $60\sec$
Time in seconds = One hour $ = 60\min$=$60 \times 60 = 3600\sec$
Step IV:
To find the angular velocity of a tip of minute hand
Using eq. (1)
\[\omega = \dfrac{\theta }{t}\]
\[\Rightarrow \omega = \dfrac{{2 \times 3.14}}{{3600}}\]
$\Rightarrow \omega = 1.745 \times {10^{ - 3}}rad/\sec $
Step V:
To find the linear velocity at the tip of minute hand
Using eq. (2)
V = \[r \times \omega \]
Length of minute hand = radius of the minute hand = 0.10m
\[\Rightarrow v = 0.1 \times 0.1745 \times {10^{ - 3}}m/s\]
\[\Rightarrow v = 1.745 \times {10^{ - 4}}m/s\]
$\therefore $ The angular velocity of the minute hand is $1.745 \times {10^{ - 3}}rad/\sec $
The linear velocity of the minute hand is $1.745 \times {10^{ - 4}}m/s$
Note:
It is to be noted that the term angular velocity and linear velocity are different terms. Since angular motion is always moving in a circular motion, a force is always required to keep it in circular motion. But a linear velocity does not require any external force to keep the object moving along a straight path.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE