Answer
Verified
430.5k+ views
Hint: We know that antiderivative means integration. We need to find the integration of \[\dfrac{{\sin (2x)}}{{\cos (x)}}dx\]. Here we have an indefinite integral. In the numerator we have sine double angle, we know the sine double angle formula that is \[\sin (2x) = 2.\sin x.\cos x\]. We substitute this in the given problem and then we integrate with respect to ‘x’.
Complete step-by-step solution:
Given \[\int {\dfrac{{\sin (2x)}}{{\cos (x)}}dx} \].
We know \[\sin (2x) = 2.\sin x.\cos x\].
The term inside the integral symbol is called the integrand.
Then the integrand becomes
\[\dfrac{{\sin (2x)}}{{\cos (x)}} = \dfrac{{2.\sin x.\cos x}}{{\cos x}}\]
Cancelling the cosine function we have,
\[\dfrac{{\sin (2x)}}{{\cos (x)}} = 2.\sin x.\]
Now applying the integration we have
\[\int {\dfrac{{\sin (2x)}}{{\cos (x)}}dx} = \int {2.\sin x} .dx\]
\[ = \int {2.\sin x} .dx\]
Taking constant term outside the integral we have,
\[ = 2\int {\sin x} .dx\]
Integrating we have,
\[ = - 2\cos x + c\]
Thus we have
The antiderivative of \[\dfrac{{\sin (2x)}}{{\cos (x)}}dx\] is \[ - 2\cos x + c\]. Where ‘c’ is the integration constant.
Note: In the given above problem we have an indefinite integral, that is no upper and lower limit. Hence we add the integration constant ‘c’ after integrating. In a definite integral we will have an upper and lower limit, we don’t need to add integration constant in the case of definite integral. We have different integration rule:
The power rule: If we have a variable ‘x’ raised to a power ‘n’ then the integration is given by \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c} \].
The constant coefficient rule: if we have an indefinite integral of \[K.f(x)\], where f(x) is some function and ‘K’ represent a constant then the integration is equal to the indefinite integral of f(x) multiplied by ‘K’. That is \[\int {K.f(x)dx = c\int {f(x)dx} } \].
The sum rule: if we have to integrate functions that are the sum of several terms, then we need to integrate each term in the sum separately. That is
\[\int {\left( {f(x) + g(x)} \right)dx = \int {f(x)dx} } + \int {g(x)dx} \]
For the difference rule we have to integrate each term in the integrand separately.
Complete step-by-step solution:
Given \[\int {\dfrac{{\sin (2x)}}{{\cos (x)}}dx} \].
We know \[\sin (2x) = 2.\sin x.\cos x\].
The term inside the integral symbol is called the integrand.
Then the integrand becomes
\[\dfrac{{\sin (2x)}}{{\cos (x)}} = \dfrac{{2.\sin x.\cos x}}{{\cos x}}\]
Cancelling the cosine function we have,
\[\dfrac{{\sin (2x)}}{{\cos (x)}} = 2.\sin x.\]
Now applying the integration we have
\[\int {\dfrac{{\sin (2x)}}{{\cos (x)}}dx} = \int {2.\sin x} .dx\]
\[ = \int {2.\sin x} .dx\]
Taking constant term outside the integral we have,
\[ = 2\int {\sin x} .dx\]
Integrating we have,
\[ = - 2\cos x + c\]
Thus we have
The antiderivative of \[\dfrac{{\sin (2x)}}{{\cos (x)}}dx\] is \[ - 2\cos x + c\]. Where ‘c’ is the integration constant.
Note: In the given above problem we have an indefinite integral, that is no upper and lower limit. Hence we add the integration constant ‘c’ after integrating. In a definite integral we will have an upper and lower limit, we don’t need to add integration constant in the case of definite integral. We have different integration rule:
The power rule: If we have a variable ‘x’ raised to a power ‘n’ then the integration is given by \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c} \].
The constant coefficient rule: if we have an indefinite integral of \[K.f(x)\], where f(x) is some function and ‘K’ represent a constant then the integration is equal to the indefinite integral of f(x) multiplied by ‘K’. That is \[\int {K.f(x)dx = c\int {f(x)dx} } \].
The sum rule: if we have to integrate functions that are the sum of several terms, then we need to integrate each term in the sum separately. That is
\[\int {\left( {f(x) + g(x)} \right)dx = \int {f(x)dx} } + \int {g(x)dx} \]
For the difference rule we have to integrate each term in the integrand separately.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE