Answer
Verified
430.5k+ views
Hint: Here, will use the formula of the area of a triangle and substitute the given vertices in that formula to find the required area. A triangle is a two-dimensional figure which has three sides and three vertices.
Formula Used:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$
Complete step-by-step answer:
According to the question,
We are given the three vertices of a triangle.
Let the vertices of the triangle be $A = \left( {1,1} \right)$, $B = \left( {3,1} \right)$ and $C = \left( {5,7} \right)$.
Hence, we have to find the area of $\vartriangle ABC$ whose three vertices are given.
Now, we will use the formula:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$………………….$\left( 1 \right)$
Now, substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$, in equation $\left( 1 \right)$, we get
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) + 3\left( {7 - 1} \right) + 5\left( {1 - 1} \right)} \right]} \right|$
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( { - 6} \right) + 3\left( 6 \right) + 5\left( 0 \right)} \right]} \right|$
Solving this further, we get,
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 18 + 0} \right]} \right| = \left| {\dfrac{1}{2}\left( {12} \right)} \right| = \left| 6 \right|$
Now, we have used the modulus sign because the area of a triangle cannot be negative.
Hence, Area of $\vartriangle ABC = 6$ square units
Therefore, the area of the triangle with vertices $\left( {1,1} \right),\left( {3,1} \right)$and $\left( {5,7} \right)$ is 6 square units.
Hence, option A is the correct answer.
Note:
We can also find the area of the triangle using the help of determinants.
We will use the formula:
Area of triangle
$ = \left| {\dfrac{1}{2}\left| \begin{gathered}
{x_1}{\text{ }}{y_1}{\text{ }}1 \\
{x_2}{\text{ }}{y_2}{\text{ }}1 \\
{x_3}{\text{ }}{y_3}{\text{ }}1 \\
\end{gathered} \right|} \right|$
Now, Substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$ we get,
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{l}}
1&1&1 \\
3&1&1 \\
5&7&1
\end{array}} \right|} \right|$
Now, solving the determinant,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) - 1\left( {3 - 5} \right) + 1\left( {21 - 5} \right)} \right]} \right|$
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 2 + 16} \right]} \right|$
Solving further,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2} \times 12} \right| = \left| 6 \right|$
Therefore, area of $\vartriangle ABC = 6$square units
Hence, option A is the correct answer.
Also, we have used the ‘modulus sign’ while finding the area of the triangle because it means that we have to take the absolute value of the terms present inside it, i.e. we will only take the non-negative values of the terms present inside the modulus when we will remove it. Hence, we have used Modulus, keeping in mind that area of a triangle can never be negative.
Formula Used:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$
Complete step-by-step answer:
According to the question,
We are given the three vertices of a triangle.
Let the vertices of the triangle be $A = \left( {1,1} \right)$, $B = \left( {3,1} \right)$ and $C = \left( {5,7} \right)$.
Hence, we have to find the area of $\vartriangle ABC$ whose three vertices are given.
Now, we will use the formula:
Area of a triangle $ = \left| {\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|$………………….$\left( 1 \right)$
Now, substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$, in equation $\left( 1 \right)$, we get
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) + 3\left( {7 - 1} \right) + 5\left( {1 - 1} \right)} \right]} \right|$
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( { - 6} \right) + 3\left( 6 \right) + 5\left( 0 \right)} \right]} \right|$
Solving this further, we get,
$ \Rightarrow $ Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 18 + 0} \right]} \right| = \left| {\dfrac{1}{2}\left( {12} \right)} \right| = \left| 6 \right|$
Now, we have used the modulus sign because the area of a triangle cannot be negative.
Hence, Area of $\vartriangle ABC = 6$ square units
Therefore, the area of the triangle with vertices $\left( {1,1} \right),\left( {3,1} \right)$and $\left( {5,7} \right)$ is 6 square units.
Hence, option A is the correct answer.
Note:
We can also find the area of the triangle using the help of determinants.
We will use the formula:
Area of triangle
$ = \left| {\dfrac{1}{2}\left| \begin{gathered}
{x_1}{\text{ }}{y_1}{\text{ }}1 \\
{x_2}{\text{ }}{y_2}{\text{ }}1 \\
{x_3}{\text{ }}{y_3}{\text{ }}1 \\
\end{gathered} \right|} \right|$
Now, Substituting $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {3,1} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( {5,7} \right)$ we get,
Area of $\vartriangle ABC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{l}}
1&1&1 \\
3&1&1 \\
5&7&1
\end{array}} \right|} \right|$
Now, solving the determinant,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ {1\left( {1 - 7} \right) - 1\left( {3 - 5} \right) + 1\left( {21 - 5} \right)} \right]} \right|$
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2}\left[ { - 6 + 2 + 16} \right]} \right|$
Solving further,
$ \Rightarrow ar\vartriangle ABC = \left| {\dfrac{1}{2} \times 12} \right| = \left| 6 \right|$
Therefore, area of $\vartriangle ABC = 6$square units
Hence, option A is the correct answer.
Also, we have used the ‘modulus sign’ while finding the area of the triangle because it means that we have to take the absolute value of the terms present inside it, i.e. we will only take the non-negative values of the terms present inside the modulus when we will remove it. Hence, we have used Modulus, keeping in mind that area of a triangle can never be negative.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE