![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Calculate the area of the shot put circle whose radius is 2.135m.
Answer
471.6k+ views
Hint: Assume ‘r’ as the radius of the given shot put circle. Apply the formula to find the area of the circle given by: - \[A=\pi {{r}^{2}}\], A = Area of the circle and r = radius of the circle. Substitute the value of ‘r’ given in the question and find the value of A. Substitute the value of \[\pi =\dfrac{22}{7}\] as this will make our calculation easy.
Complete step by step answer:
The above figure can be assumed as the field of shot put circle. Here, we have assumed that the radius of the given field is ‘r’.
We know that area of a circle is given as: -
\[A=\pi {{r}^{2}}\]
Where, A = Area of the circle
r = radius of the circle
\[\pi \] = constant
Therefore, area of the shot put circle is given as: -
\[A=\pi {{r}^{2}}\] - (i)
We have been provided with the radius of the circle equal to 2.135m. Therefore, substituting r = 2.135m in equation (i), we get,
\[A=\pi \times {{\left( 2.135 \right)}^{2}}\]
Now, substituting, \[\pi =\dfrac{22}{7}\] in the above relation, we have,
\[\begin{align}
& \Rightarrow A=\dfrac{22}{7}\times 2.135\times 2.135 \\
& \Rightarrow A=14.32585{{m}^{2}} \\
\end{align}\]
Note: One may note that we have taken the value of \[\pi =\dfrac{22}{7}\] because the radius 2.135m can be easily cancelled by 7. This makes our calculation easy. We can also substitute \[\pi =3.14\], this will not make a difference in the answer but only numbers after decimal may change. One important thing to remember is that we must write the unit of area in the end which is ‘\[{{m}^{2}}\]’ here. Failing to do so may get marks deducted in subjective questions.
Complete step by step answer:
The above figure can be assumed as the field of shot put circle. Here, we have assumed that the radius of the given field is ‘r’.
![seo images](https://www.vedantu.com/question-sets/dde50989-2108-491d-9cae-ae968ffb831c5065195554648545259.png)
We know that area of a circle is given as: -
\[A=\pi {{r}^{2}}\]
Where, A = Area of the circle
r = radius of the circle
\[\pi \] = constant
Therefore, area of the shot put circle is given as: -
\[A=\pi {{r}^{2}}\] - (i)
We have been provided with the radius of the circle equal to 2.135m. Therefore, substituting r = 2.135m in equation (i), we get,
\[A=\pi \times {{\left( 2.135 \right)}^{2}}\]
Now, substituting, \[\pi =\dfrac{22}{7}\] in the above relation, we have,
\[\begin{align}
& \Rightarrow A=\dfrac{22}{7}\times 2.135\times 2.135 \\
& \Rightarrow A=14.32585{{m}^{2}} \\
\end{align}\]
Note: One may note that we have taken the value of \[\pi =\dfrac{22}{7}\] because the radius 2.135m can be easily cancelled by 7. This makes our calculation easy. We can also substitute \[\pi =3.14\], this will not make a difference in the answer but only numbers after decimal may change. One important thing to remember is that we must write the unit of area in the end which is ‘\[{{m}^{2}}\]’ here. Failing to do so may get marks deducted in subjective questions.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What constitutes the central nervous system How are class 10 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)