
Calculate the limit of resolution of a telescope objective having a diameter of 200 cm, if it has to detect light of wavelength 500 nm coming from a star:
\[
A.{\text{ }}305 \times {10^{ - 9}}{\text{radian}} \\
B.{\text{ }}152.5 \times {10^{ - 9}}{\text{radian}} \\
C.{\text{ }}610 \times {10^{ - 9}}{\text{radian}} \\
D.{\text{ }}457.5 \times {10^{ - 9}}{\text{radian}} \\
\]
Answer
606.6k+ views
- Hint – In this question, the diameter and wavelength of telescope objective is given, so in order to calculate the resolution of the telescope we will apply the formula of limit of resolution of telescope which is mentioned in the solution. Most importantly in order to find the answer we will take care of the units of the parameters.
Formula used- $\theta = \dfrac{{1.22\lambda }}{D}$
Complete step-by-step solution -
Given that
Diameter $ = 200cm = 200 \times {10^{ - 2}}m$
Wavelength $500nm = 500 \times {10^{ - 9}}m$
We know limit of resolution of telescope is given as:
$\theta = \dfrac{{1.22\lambda }}{D}$
Here,
$\theta $ is the resolution of the telescope.
$\lambda $ is the wavelength of light.
$D$ is the diameter of the objective of a telescope.
Substitute the given values in above formula we have
$
\because \theta = \dfrac{{1.22\lambda }}{D} \\
\Rightarrow \theta = \dfrac{{1.22 \times 500 \times {{10}^{ - 9}}}}{{200 \times {{10}^{ - 2}}}} \\
\Rightarrow \theta = 305 \times {10^{ - 9}}{\text{radian}} \\
$
Hence the limit of resolution of telescope is $305 \times {10^{ - 9}}{\text{radian}}$
So, the correct answer is option A.
Additional information- The resolution limit (or solving power) is a function of the objective lens' ability to distinguish information present in the object in the picture adjacent to it. It's the distance in the picture between two points that is just being resolved in the shot. Ultimately, the resolving power of an optical device is reduced by aperture diffraction. And an optical device can not produce a flawless picture of a point.
Note- The resolution limit (or resolving power) is a function of the objective lens' ability to distinguish information contained in the object in the image adjacent to it. It's the distance in the picture between two points that is just being resolved in the shot. Ultimately, the resolving power of an optical system is limited by aperture diffraction. So an optical system cannot create a perfect picture of a point.
Formula used- $\theta = \dfrac{{1.22\lambda }}{D}$
Complete step-by-step solution -
Given that
Diameter $ = 200cm = 200 \times {10^{ - 2}}m$
Wavelength $500nm = 500 \times {10^{ - 9}}m$
We know limit of resolution of telescope is given as:
$\theta = \dfrac{{1.22\lambda }}{D}$
Here,
$\theta $ is the resolution of the telescope.
$\lambda $ is the wavelength of light.
$D$ is the diameter of the objective of a telescope.
Substitute the given values in above formula we have
$
\because \theta = \dfrac{{1.22\lambda }}{D} \\
\Rightarrow \theta = \dfrac{{1.22 \times 500 \times {{10}^{ - 9}}}}{{200 \times {{10}^{ - 2}}}} \\
\Rightarrow \theta = 305 \times {10^{ - 9}}{\text{radian}} \\
$
Hence the limit of resolution of telescope is $305 \times {10^{ - 9}}{\text{radian}}$
So, the correct answer is option A.
Additional information- The resolution limit (or solving power) is a function of the objective lens' ability to distinguish information present in the object in the picture adjacent to it. It's the distance in the picture between two points that is just being resolved in the shot. Ultimately, the resolving power of an optical device is reduced by aperture diffraction. And an optical device can not produce a flawless picture of a point.
Note- The resolution limit (or resolving power) is a function of the objective lens' ability to distinguish information contained in the object in the image adjacent to it. It's the distance in the picture between two points that is just being resolved in the shot. Ultimately, the resolving power of an optical system is limited by aperture diffraction. So an optical system cannot create a perfect picture of a point.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

