Answer
Verified
383.7k+ views
Hint: We first explain the terms class marks, cumulative frequencies. We use the formula of ${{x}_{me}}={{x}_{l}}+\dfrac{{{f}_{m}}-{{f}_{m-1}}}{2{{f}_{m}}-{{f}_{m-1}}-{{f}_{m+1}}}\times c$ where ${{x}_{me}}$ denotes the median value. We place the values to find the solution.
Complete step-by-step solution:
To find the median for a continuous distribution, we need to find the total frequency along with cumulative frequency and the class mark.
The frequencies are given which in total gives $n=11+13+13+9+4=50$. The value of $\dfrac{n}{2}=\dfrac{50}{2}=25$.
The class intervals and their upper and lower class is given which gives the class marks as the middle point of those upper and lower classes.
We also find the less than type cumulative frequencies.
The median class will be the class where the value of $\dfrac{n}{2}=25$ lies in the Cumulative Frequency column. So, the median class is 20-30 as 25 crosses that value of 24 in cumulative frequencies’ column.
We follow the formula of ${{x}_{me}}={{x}_{l}}+\dfrac{{{f}_{m}}-{{f}_{m-1}}}{2{{f}_{m}}-{{f}_{m-1}}-{{f}_{m+1}}}\times c$.
Here ${{x}_{me}}$ denotes the median value. ${{f}_{m}},{{f}_{m-1}},{{f}_{m+1}}$ are the frequency values of the with respect the median class frequency being ${{f}_{m}}$. $c$ is the class width.
So, ${{x}_{me}}=20+\dfrac{13-11}{2\times 13-11-13}\times 10=30$.
The median value for the given distribution is 30.
Note: If the cumulative frequency for an interval is exactly 50%, then the median value would be the endpoint of this interval. A cumulative frequency diagram is also a good way to find the interquartile range, which is the difference between the upper quartile and lower quartile.
Complete step-by-step solution:
To find the median for a continuous distribution, we need to find the total frequency along with cumulative frequency and the class mark.
The frequencies are given which in total gives $n=11+13+13+9+4=50$. The value of $\dfrac{n}{2}=\dfrac{50}{2}=25$.
The class intervals and their upper and lower class is given which gives the class marks as the middle point of those upper and lower classes.
We also find the less than type cumulative frequencies.
Class interval | Class mark | Frequency | Cumulative Frequency |
10-20 | 15 | 11 | 11 |
20-30 | 25 | 13 | 24 |
30-40 | 35 | 13 | 37 |
40-50 | 45 | 9 | 46 |
50-60 | 55 | 4 | 50 |
The median class will be the class where the value of $\dfrac{n}{2}=25$ lies in the Cumulative Frequency column. So, the median class is 20-30 as 25 crosses that value of 24 in cumulative frequencies’ column.
We follow the formula of ${{x}_{me}}={{x}_{l}}+\dfrac{{{f}_{m}}-{{f}_{m-1}}}{2{{f}_{m}}-{{f}_{m-1}}-{{f}_{m+1}}}\times c$.
Here ${{x}_{me}}$ denotes the median value. ${{f}_{m}},{{f}_{m-1}},{{f}_{m+1}}$ are the frequency values of the with respect the median class frequency being ${{f}_{m}}$. $c$ is the class width.
So, ${{x}_{me}}=20+\dfrac{13-11}{2\times 13-11-13}\times 10=30$.
The median value for the given distribution is 30.
Note: If the cumulative frequency for an interval is exactly 50%, then the median value would be the endpoint of this interval. A cumulative frequency diagram is also a good way to find the interquartile range, which is the difference between the upper quartile and lower quartile.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE