Calculate the number of atoms in 48 g of Mg.
A) $12.04 \times {10^{23}}$
B) $6.02 \times {10^{23}}$
C) $18.06 \times {10^{23}}$
D) $24.08 \times {10^{23}}$
Answer
Verified
469.8k+ views
Hint: In order to find the number of atoms in 48 g of Mg, use the formula which relates the number of particles/atoms with the Avogadro number and number of moles of the substance and this required formula is: number of atoms = number of moles $ \times $ Avogadro's number. You need to calculate the number of moles in 48 g of Mg to find the number of atoms.
Complete step by step solution:
Molar mass of magnesium (Mg) is 24 g/mol.
You must know that the number of particles or atoms or molecules in a given substance is the multiplication of the number of moles of the given substance and the Avogadro number. Avogadro number (denoted by ${N_A}$) is a constant value which is equal to $6.022 \times {10^{23}}$atoms/mol.
And, the formula to find the number of moles is:
Number of moles = $\dfrac{{{\text{given mass}}}}{{{\text{molar mass}}}}$
Here, we are given 48 g of Mg, therefore it is the given mass.
Thus, number of moles of Mg in 48 g = $\dfrac{{48}}{{24}} = 2mol$
Now, coming back to the formula to find the number of atoms.
Number of atoms = number of moles $ \times $ Avogadro's number
Therefore, number of atoms in 48 g of Mg = 2 mol $ \times $ $6.022 \times {10^{23}}$atoms/mol= \[12.04 \times {10^{23}}\] atoms.
Thus, 48 g of Mg is equivalent to $12.04 \times {10^{23}}$ atoms.
Hence, option A is the correct answer.
Note: It should be noted that molar mass is the mass of 1 mole of a substance in grams. 1 mole of a particular substance contains Avogadro's number (also called Avogadro constant) of particles or entities (atoms/molecules) that is, $6.022 \times {10^{23}}$ particles. Therefore, we can also say that 1 mol of Mg contains $6.022 \times {10^{23}}$ atoms and then, consequently 2 moles of Mg will contain $12 \times {10^{23}}$ atoms.
Complete step by step solution:
Molar mass of magnesium (Mg) is 24 g/mol.
You must know that the number of particles or atoms or molecules in a given substance is the multiplication of the number of moles of the given substance and the Avogadro number. Avogadro number (denoted by ${N_A}$) is a constant value which is equal to $6.022 \times {10^{23}}$atoms/mol.
And, the formula to find the number of moles is:
Number of moles = $\dfrac{{{\text{given mass}}}}{{{\text{molar mass}}}}$
Here, we are given 48 g of Mg, therefore it is the given mass.
Thus, number of moles of Mg in 48 g = $\dfrac{{48}}{{24}} = 2mol$
Now, coming back to the formula to find the number of atoms.
Number of atoms = number of moles $ \times $ Avogadro's number
Therefore, number of atoms in 48 g of Mg = 2 mol $ \times $ $6.022 \times {10^{23}}$atoms/mol= \[12.04 \times {10^{23}}\] atoms.
Thus, 48 g of Mg is equivalent to $12.04 \times {10^{23}}$ atoms.
Hence, option A is the correct answer.
Note: It should be noted that molar mass is the mass of 1 mole of a substance in grams. 1 mole of a particular substance contains Avogadro's number (also called Avogadro constant) of particles or entities (atoms/molecules) that is, $6.022 \times {10^{23}}$ particles. Therefore, we can also say that 1 mol of Mg contains $6.022 \times {10^{23}}$ atoms and then, consequently 2 moles of Mg will contain $12 \times {10^{23}}$ atoms.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE